Overview
CELO Balance
CELO Value
$0.00Multichain Info
Latest 25 from a total of 25 transactions
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Execute With Tok... | 57422609 | 1 hr ago | IN | 0 CELO | 0.00292625 | ||||
| Execute With Tok... | 57417959 | 2 hrs ago | IN | 0 CELO | 0.00250435 | ||||
| Execute With Tok... | 57410309 | 4 hrs ago | IN | 0 CELO | 0.00249873 | ||||
| Execute With Tok... | 57401479 | 6 hrs ago | IN | 0 CELO | 0.00292625 | ||||
| Execute With Tok... | 57397989 | 7 hrs ago | IN | 0 CELO | 0.00264822 | ||||
| Execute With Tok... | 57397599 | 7 hrs ago | IN | 0 CELO | 0.00249872 | ||||
| Execute With Tok... | 57397224 | 8 hrs ago | IN | 0 CELO | 0.00249873 | ||||
| Execute With Tok... | 57397214 | 8 hrs ago | IN | 0 CELO | 0.00249843 | ||||
| Execute With Tok... | 57396869 | 8 hrs ago | IN | 0 CELO | 0.00249873 | ||||
| Execute With Tok... | 57390739 | 9 hrs ago | IN | 0 CELO | 0.00249873 | ||||
| Execute With Tok... | 57389979 | 10 hrs ago | IN | 0 CELO | 0.00249873 | ||||
| Execute With Tok... | 57385394 | 11 hrs ago | IN | 0 CELO | 0.00249843 | ||||
| Execute With Tok... | 57381499 | 12 hrs ago | IN | 0 CELO | 0.00274964 | ||||
| Execute With Tok... | 57381094 | 12 hrs ago | IN | 0 CELO | 0.00249872 | ||||
| Execute With Tok... | 57378024 | 13 hrs ago | IN | 0 CELO | 0.00249842 | ||||
| Execute With Tok... | 57375389 | 14 hrs ago | IN | 0 CELO | 0.00249843 | ||||
| Execute With Tok... | 57372304 | 15 hrs ago | IN | 0 CELO | 0.00249903 | ||||
| Execute With Tok... | 57368054 | 16 hrs ago | IN | 0 CELO | 0.00249843 | ||||
| Execute With Tok... | 57366159 | 16 hrs ago | IN | 0 CELO | 0.00249903 | ||||
| Execute With Tok... | 57365744 | 16 hrs ago | IN | 0 CELO | 0.00249903 | ||||
| Execute With Tok... | 57363859 | 17 hrs ago | IN | 0 CELO | 0.00249843 | ||||
| Execute With Tok... | 57362259 | 17 hrs ago | IN | 0 CELO | 0.00292625 | ||||
| Execute With Tok... | 57354664 | 19 hrs ago | IN | 0 CELO | 0.00249873 | ||||
| Execute With Tok... | 57354604 | 19 hrs ago | IN | 0 CELO | 0.00249872 | ||||
| Execute With Tok... | 57353479 | 20 hrs ago | IN | 0 CELO | 0.00249813 |
Latest 1 internal transaction
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 52548389 | 56 days ago | Contract Creation | 0 CELO |
Cross-Chain Transactions
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.12;
import {AxelarExpressExecutableWithToken} from "@axelar-network/contracts/express/AxelarExpressExecutableWithToken.sol";
import {IAxelarGatewayWithToken} from "@axelar-network/contracts/interfaces/IAxelarGatewayWithToken.sol";
import {IAxelarGasService} from "@axelar-network/contracts/interfaces/IAxelarGasService.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import "./interfaces/IDaimoPayBridger.sol";
/// @author Daimo, Inc
/// @custom:security-contact [email protected]
///
/// @notice Bridges assets to a destination chain using Axelar Protocol. Makes
/// the assumption that the local token is an ERC20 token and has a 1 to 1 price
/// with the corresponding destination token.
///
/// @dev Axelar protocol requires the bridge recipient to be a contract
/// implementing the AxelarExecutableWithToken interface. This contract
/// fulfills that requirement and acts as the receiver on the destination chain.
contract DaimoPayAxelarBridger is
IDaimoPayBridger,
AxelarExpressExecutableWithToken
{
using SafeERC20 for IERC20;
struct AxelarBridgeRoute {
/// Axelar requires the name of the destination chain, e.g. "base",
/// "binance".
string destChainName;
address bridgeTokenIn;
address bridgeTokenOut;
/// Axelar requires the symbol name of bridgeTokenIn, e.g. "axlUSDC" or
/// "USDC".
string tokenSymbol;
/// When bridging with an Axelar contract call, the receiver on the
/// destination chain must be a contract that implements the
/// AxelarExecutableWithToken interface.
address receiverContract;
/// Fee paid in native token on the source chain for Axelar's bridging
/// gas fee.
uint256 nativeFee;
}
struct ExtraData {
/// Address to refund excess gas fees to.
address gasRefundAddress;
/// Whether to use Axelar Express bridging.
bool useExpress;
}
/// Axelar contracts for this chain.
IAxelarGatewayWithToken public immutable axelarGateway;
IAxelarGasService public immutable axelarGasService;
/// Mapping from destination chain and token to the corresponding token on
/// the current chain.
mapping(uint256 toChainId => AxelarBridgeRoute bridgeRoute)
public bridgeRouteMapping;
/// Specify the localToken mapping to destination chains and tokens
constructor(
IAxelarGatewayWithToken _axelarGateway,
IAxelarGasService _axelarGasService,
uint256[] memory _toChainIds,
AxelarBridgeRoute[] memory _bridgeRoutes
) AxelarExpressExecutableWithToken(address(_axelarGateway)) {
axelarGateway = _axelarGateway;
axelarGasService = _axelarGasService;
uint256 n = _toChainIds.length;
require(n == _bridgeRoutes.length, "DPAB: wrong bridgeRoutes length");
for (uint256 i = 0; i < n; ++i) {
bridgeRouteMapping[_toChainIds[i]] = _bridgeRoutes[i];
}
}
// ----- AXELAR EXECUTABLE FUNCTIONS -----
/// Part of the AxelarExpressExecutableWithToken interface. Used to make
/// a contract call on the destination chain without tokens. Not supported
/// by this implementation because we will always be bridging tokens.
function _execute(
bytes32 /* commandId */,
string calldata /* sourceChain */,
string calldata /* sourceAddress */,
bytes calldata /* payload */
) internal pure override {
revert("DPAxB: _execute not supported");
}
/// Part of the AxelarExpressExecutableWithToken interface. Used to make
/// a contract call on the destination chain with tokens. In this case, it
/// will always be used to transfer tokens to the intent address on the
/// destination chain.
function _executeWithToken(
bytes32 /* commandId */,
string calldata /* sourceChain */,
string calldata /* sourceAddress */,
bytes calldata payload,
string calldata tokenSymbol,
uint256 amount
) internal override {
address recipient = abi.decode(payload, (address));
address tokenAddress = axelarGateway.tokenAddresses(tokenSymbol);
IERC20(tokenAddress).safeTransfer(recipient, amount);
}
// ----- BRIDGING FUNCTIONS -----
/// Given a list of bridge token options, find the index of the bridge token
/// that matches the correct bridge token out. Return the length of the array
/// if no match is found.
function _findBridgeTokenOut(
TokenAmount[] calldata bridgeTokenOutOptions,
address bridgeTokenOut
) internal pure returns (uint256 index) {
uint256 n = bridgeTokenOutOptions.length;
for (uint256 i = 0; i < n; ++i) {
if (address(bridgeTokenOutOptions[i].token) == bridgeTokenOut) {
return i;
}
}
return n;
}
/// Retrieves the necessary data for bridging tokens from the current chain
/// to a specified destination chain using Axelar Protocol.
function _getBridgeData(
uint256 toChainId,
TokenAmount[] calldata bridgeTokenOutOptions
)
internal
view
returns (
address inToken,
uint256 inAmount,
address outToken,
string memory outTokenSymbol,
uint256 outAmount,
string memory destChainName,
address receiverContract,
uint256 nativeFee
)
{
AxelarBridgeRoute memory bridgeRoute = bridgeRouteMapping[toChainId];
require(
bridgeRoute.bridgeTokenOut != address(0),
"DPAB: bridge route not found"
);
uint256 index = _findBridgeTokenOut(
bridgeTokenOutOptions,
bridgeRoute.bridgeTokenOut
);
// If the index is the length of the array, then the bridge token out
// was not found in the list of options.
require(index < bridgeTokenOutOptions.length, "DPAB: bad bridge token");
inToken = bridgeRoute.bridgeTokenIn;
// Assumes the input token has a 1 to 1 price with the destination token.
// Gas fees are charged in native token and paid separately.
inAmount = bridgeTokenOutOptions[index].amount;
outToken = bridgeRoute.bridgeTokenOut;
outTokenSymbol = bridgeRoute.tokenSymbol;
outAmount = bridgeTokenOutOptions[index].amount;
destChainName = bridgeRoute.destChainName;
receiverContract = bridgeRoute.receiverContract;
nativeFee = bridgeRoute.nativeFee;
}
/// Determine the input token and amount required for bridging to
/// another chain.
function getBridgeTokenIn(
uint256 toChainId,
TokenAmount[] calldata bridgeTokenOutOptions
) public view returns (address bridgeTokenIn, uint256 inAmount) {
(bridgeTokenIn, inAmount, , , , , , ) = _getBridgeData(
toChainId,
bridgeTokenOutOptions
);
}
/// Initiate a bridge to a destination chain using Axelar Protocol.
function sendToChain(
uint256 toChainId,
address toAddress,
TokenAmount[] calldata bridgeTokenOutOptions,
address refundAddress,
bytes calldata extraData
) public {
require(toChainId != block.chainid, "DPAxB: same chain");
(
address inToken,
uint256 inAmount,
address outToken,
string memory outTokenSymbol,
uint256 outAmount,
string memory destChainName,
address receiverContract,
uint256 nativeFee
) = _getBridgeData(toChainId, bridgeTokenOutOptions);
require(outAmount > 0, "DPAxB: zero amount");
// Parse remaining arguments from extraData
ExtraData memory extra;
extra = abi.decode(extraData, (ExtraData));
// Move input token from caller to this contract
IERC20(inToken).safeTransferFrom({
from: msg.sender,
to: address(this),
value: inAmount
});
// Pay for Axelar's bridging gas fee.
if (extra.useExpress) {
axelarGasService.payNativeGasForExpressCallWithToken{
value: nativeFee
}({
sender: address(this),
destinationChain: destChainName,
destinationAddress: Strings.toHexString(receiverContract),
payload: abi.encode(toAddress),
symbol: outTokenSymbol,
amount: outAmount,
// The relayer supplies the gas fee, so we should let them
// specify where to refund any excess gas fees.
refundAddress: extra.gasRefundAddress
});
} else {
axelarGasService.payNativeGasForContractCallWithToken{
value: nativeFee
}({
sender: address(this),
destinationChain: destChainName,
destinationAddress: Strings.toHexString(receiverContract),
payload: abi.encode(toAddress),
symbol: outTokenSymbol,
amount: outAmount,
// The relayer supplies the gas fee, so we should let them
// specify where to refund any excess gas fees.
refundAddress: extra.gasRefundAddress
});
}
// Approve the AxelarGateway contract and initiate the bridge. Send the
// tokens to the receiverContract on the destination chain. The
// _executeWithToken function will be called on the destination chain.
IERC20(inToken).forceApprove({
spender: address(axelarGateway),
value: inAmount
});
axelarGateway.callContractWithToken({
destinationChain: destChainName,
contractAddress: Strings.toHexString(receiverContract),
payload: abi.encode(toAddress),
symbol: outTokenSymbol,
amount: outAmount
});
emit BridgeInitiated({
fromAddress: msg.sender,
fromToken: inToken,
fromAmount: inAmount,
toChainId: toChainId,
toAddress: toAddress,
toToken: outToken,
toAmount: outAmount,
refundAddress: refundAddress
});
}
receive() external payable {}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { AxelarExecutable } from '../executable/AxelarExecutable.sol';
import { AxelarExecutableWithToken } from '../executable/AxelarExecutableWithToken.sol';
import { IAxelarExecutable } from '../interfaces/IAxelarExecutable.sol';
import { IAxelarExecutableWithToken } from '../interfaces/IAxelarExecutableWithToken.sol';
import { IAxelarExpressExecutableWithToken } from '../interfaces/IAxelarExpressExecutableWithToken.sol';
import { ExpressExecutorTracker } from './ExpressExecutorTracker.sol';
import { SafeTokenTransferFrom, SafeTokenTransfer } from '../libs/SafeTransfer.sol';
import { IERC20 } from '../interfaces/IERC20.sol';
abstract contract AxelarExpressExecutableWithToken is
IAxelarExpressExecutableWithToken,
ExpressExecutorTracker,
AxelarExecutableWithToken
{
using SafeTokenTransfer for IERC20;
using SafeTokenTransferFrom for IERC20;
constructor(address gateway_) AxelarExecutableWithToken(gateway_) {}
function execute(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes calldata payload
) external override(AxelarExecutable, IAxelarExecutable) {
bytes32 payloadHash = keccak256(payload);
if (!gateway().validateContractCall(commandId, sourceChain, sourceAddress, payloadHash))
revert NotApprovedByGateway();
address expressExecutor = _popExpressExecutor(commandId, sourceChain, sourceAddress, payloadHash);
if (expressExecutor != address(0)) {
// slither-disable-next-line reentrancy-events
emit ExpressExecutionFulfilled(commandId, sourceChain, sourceAddress, payloadHash, expressExecutor);
} else {
_execute(commandId, sourceChain, sourceAddress, payload);
}
}
function executeWithToken(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes calldata payload,
string calldata tokenSymbol,
uint256 amount
) external override(AxelarExecutableWithToken, IAxelarExecutableWithToken) {
bytes32 payloadHash = keccak256(payload);
if (
!gatewayWithToken().validateContractCallAndMint(
commandId,
sourceChain,
sourceAddress,
payloadHash,
tokenSymbol,
amount
)
) revert NotApprovedByGateway();
address expressExecutor = _popExpressExecutorWithToken(
commandId,
sourceChain,
sourceAddress,
payloadHash,
tokenSymbol,
amount
);
if (expressExecutor != address(0)) {
// slither-disable-next-line reentrancy-events
emit ExpressExecutionWithTokenFulfilled(
commandId,
sourceChain,
sourceAddress,
payloadHash,
tokenSymbol,
amount,
expressExecutor
);
address gatewayToken = gatewayWithToken().tokenAddresses(tokenSymbol);
IERC20(gatewayToken).safeTransfer(expressExecutor, amount);
} else {
_executeWithToken(commandId, sourceChain, sourceAddress, payload, tokenSymbol, amount);
}
}
function expressExecute(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes calldata payload
) external payable virtual {
if (gateway().isCommandExecuted(commandId)) revert AlreadyExecuted();
address expressExecutor = msg.sender;
bytes32 payloadHash = keccak256(payload);
emit ExpressExecuted(commandId, sourceChain, sourceAddress, payloadHash, expressExecutor);
_setExpressExecutor(commandId, sourceChain, sourceAddress, payloadHash, expressExecutor);
_execute(commandId, sourceChain, sourceAddress, payload);
}
function expressExecuteWithToken(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes calldata payload,
string calldata symbol,
uint256 amount
) external payable virtual {
if (gatewayWithToken().isCommandExecuted(commandId)) revert AlreadyExecuted();
address expressExecutor = msg.sender;
address gatewayToken = gatewayWithToken().tokenAddresses(symbol);
bytes32 payloadHash = keccak256(payload);
emit ExpressExecutedWithToken(
commandId,
sourceChain,
sourceAddress,
payloadHash,
symbol,
amount,
expressExecutor
);
_setExpressExecutorWithToken(
commandId,
sourceChain,
sourceAddress,
payloadHash,
symbol,
amount,
expressExecutor
);
IERC20(gatewayToken).safeTransferFrom(expressExecutor, address(this), amount);
_executeWithToken(commandId, sourceChain, sourceAddress, payload, symbol, amount);
}
/**
* @notice Returns the express executor for a given command.
* @param commandId The commandId for the contractCall.
* @param sourceChain The source chain.
* @param sourceAddress The source address.
* @param payloadHash The hash of the payload.
* @return expressExecutor The address of the express executor.
*/
function getExpressExecutor(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes32 payloadHash
) external view returns (address expressExecutor) {
expressExecutor = _getExpressExecutor(commandId, sourceChain, sourceAddress, payloadHash);
}
/**
* @notice Returns the express executor with token for a given command.
* @param commandId The commandId for the contractCallWithToken.
* @param sourceChain The source chain.
* @param sourceAddress The source address.
* @param payloadHash The hash of the payload.
* @param symbol The token symbol.
* @param amount The amount of tokens.
* @return expressExecutor The address of the express executor.
*/
function getExpressExecutorWithToken(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes32 payloadHash,
string calldata symbol,
uint256 amount
) external view returns (address expressExecutor) {
expressExecutor = _getExpressExecutorWithToken(
commandId,
sourceChain,
sourceAddress,
payloadHash,
symbol,
amount
);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IAxelarGateway } from './IAxelarGateway.sol';
/**
* @title IAxelarGatewayWithToken
* @dev Interface for the Axelar Gateway that supports cross-chain token transfers coupled with general message passing.
* It extends IAxelarGateway to include token-related functionality.
*/
interface IAxelarGatewayWithToken is IAxelarGateway {
/**
* @notice Emitted when a token is sent to another chain.
* @dev Logs the attempt to send tokens to a recipient on another chain.
* @param sender The address of the sender who initiated the token transfer.
* @param destinationChain The name of the destination chain.
* @param destinationAddress The address of the recipient on the destination chain.
* @param symbol The symbol of the token being transferred.
* @param amount The amount of the tokens being transferred.
*/
event TokenSent(
address indexed sender,
string destinationChain,
string destinationAddress,
string symbol,
uint256 amount
);
/**
* @notice Emitted when a contract call is made through the gateway along with a token transfer.
* @dev Logs the attempt to call a contract on another chain with an associated token transfer.
* @param sender The address of the sender who initiated the contract call with token.
* @param destinationChain The name of the destination chain.
* @param destinationContractAddress The address of the contract on the destination chain.
* @param payloadHash The keccak256 hash of the sent payload data.
* @param payload The payload data used for the contract call.
* @param symbol The symbol of the token being transferred.
* @param amount The amount of the tokens being transferred.
*/
event ContractCallWithToken(
address indexed sender,
string destinationChain,
string destinationContractAddress,
bytes32 indexed payloadHash,
bytes payload,
string symbol,
uint256 amount
);
/**
* @notice Emitted when a contract call with a token minting is approved.
* @dev Logs the approval of a contract call that originated from another chain and involves a token minting process.
* @param commandId The identifier of the command to execute.
* @param sourceChain The name of the source chain from whence the command came.
* @param sourceAddress The address of the sender on the source chain.
* @param contractAddress The address of the contract where the call will be executed.
* @param payloadHash The keccak256 hash of the approved payload data.
* @param symbol The symbol of the token being minted.
* @param amount The amount of the tokens being minted.
* @param sourceTxHash The hash of the source transaction on the source chain.
* @param sourceEventIndex The index of the event in the source transaction logs.
*/
event ContractCallApprovedWithMint(
bytes32 indexed commandId,
string sourceChain,
string sourceAddress,
address indexed contractAddress,
bytes32 indexed payloadHash,
string symbol,
uint256 amount,
bytes32 sourceTxHash,
uint256 sourceEventIndex
);
/**
* @notice Sends tokens to another chain.
* @dev Initiates a cross-chain token transfer through the gateway to the specified destination chain and recipient.
* @param destinationChain The name of the destination chain.
* @param destinationAddress The address of the recipient on the destination chain.
* @param symbol The symbol of the token being transferred.
* @param amount The amount of the tokens being transferred.
*/
function sendToken(
string calldata destinationChain,
string calldata destinationAddress,
string calldata symbol,
uint256 amount
) external;
/**
* @notice Makes a contract call on another chain with an associated token transfer.
* @dev Initiates a cross-chain contract call through the gateway that includes a token transfer to the specified contract on the destination chain.
* @param destinationChain The name of the destination chain.
* @param contractAddress The address of the contract on the destination chain.
* @param payload The payload data to be used in the contract call.
* @param symbol The symbol of the token being transferred.
* @param amount The amount of the tokens being transferred.
*/
function callContractWithToken(
string calldata destinationChain,
string calldata contractAddress,
bytes calldata payload,
string calldata symbol,
uint256 amount
) external;
/**
* @notice Checks if a contract call with token minting is approved.
* @dev Determines whether a given contract call, identified by the commandId and payloadHash, involving token minting is approved.
* @param commandId The identifier of the command to check.
* @param sourceChain The name of the source chain.
* @param sourceAddress The address of the sender on the source chain.
* @param contractAddress The address of the contract where the call will be executed.
* @param payloadHash The keccak256 hash of the payload data.
* @param symbol The symbol of the token associated with the minting.
* @param amount The amount of the tokens to be minted.
* @return True if the contract call with token minting is approved, false otherwise.
*/
function isContractCallAndMintApproved(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
address contractAddress,
bytes32 payloadHash,
string calldata symbol,
uint256 amount
) external view returns (bool);
/**
* @notice Validates and approves a contract call with token minting.
* @dev Validates the given contract call information and marks it as approved if valid. It also involves the minting of tokens.
* @param commandId The identifier of the command to validate.
* @param sourceChain The name of the source chain.
* @param sourceAddress The address of the sender on the source chain.
* @param payloadHash The keccak256 hash of the payload data.
* @param symbol The symbol of the token associated with the minting.
* @param amount The amount of the tokens to be minted.
* @return True if the contract call with token minting is validated and approved, false otherwise.
*/
function validateContractCallAndMint(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes32 payloadHash,
string calldata symbol,
uint256 amount
) external returns (bool);
/**
* @notice Retrieves the address of a token given its symbol.
* @dev Gets the contract address of the token registered with the given symbol.
* @param symbol The symbol of the token to retrieve the address for.
* @return The contract address of the token corresponding to the given symbol.
*/
function tokenAddresses(string memory symbol) external view returns (address);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { GasInfo } from '../types/GasEstimationTypes.sol';
import { IInterchainGasEstimation } from './IInterchainGasEstimation.sol';
import { IUpgradable } from './IUpgradable.sol';
/**
* @title IAxelarGasService Interface
* @notice This is an interface for the AxelarGasService contract which manages gas payments
* and refunds for cross-chain communication on the Axelar network.
* @dev This interface inherits IUpgradable
*/
interface IAxelarGasService is IInterchainGasEstimation, IUpgradable {
error InvalidAddress();
error NotCollector();
error InvalidAmounts();
error InvalidGasUpdates();
error InvalidParams();
error InsufficientGasPayment(uint256 required, uint256 provided);
event GasPaidForContractCall(
address indexed sourceAddress,
string destinationChain,
string destinationAddress,
bytes32 indexed payloadHash,
address gasToken,
uint256 gasFeeAmount,
address refundAddress
);
event GasPaidForContractCallWithToken(
address indexed sourceAddress,
string destinationChain,
string destinationAddress,
bytes32 indexed payloadHash,
string symbol,
uint256 amount,
address gasToken,
uint256 gasFeeAmount,
address refundAddress
);
event NativeGasPaidForContractCall(
address indexed sourceAddress,
string destinationChain,
string destinationAddress,
bytes32 indexed payloadHash,
uint256 gasFeeAmount,
address refundAddress
);
event NativeGasPaidForContractCallWithToken(
address indexed sourceAddress,
string destinationChain,
string destinationAddress,
bytes32 indexed payloadHash,
string symbol,
uint256 amount,
uint256 gasFeeAmount,
address refundAddress
);
event GasPaidForExpressCall(
address indexed sourceAddress,
string destinationChain,
string destinationAddress,
bytes32 indexed payloadHash,
address gasToken,
uint256 gasFeeAmount,
address refundAddress
);
event GasPaidForExpressCallWithToken(
address indexed sourceAddress,
string destinationChain,
string destinationAddress,
bytes32 indexed payloadHash,
string symbol,
uint256 amount,
address gasToken,
uint256 gasFeeAmount,
address refundAddress
);
event NativeGasPaidForExpressCall(
address indexed sourceAddress,
string destinationChain,
string destinationAddress,
bytes32 indexed payloadHash,
uint256 gasFeeAmount,
address refundAddress
);
event NativeGasPaidForExpressCallWithToken(
address indexed sourceAddress,
string destinationChain,
string destinationAddress,
bytes32 indexed payloadHash,
string symbol,
uint256 amount,
uint256 gasFeeAmount,
address refundAddress
);
event GasAdded(
bytes32 indexed txHash,
uint256 indexed logIndex,
address gasToken,
uint256 gasFeeAmount,
address refundAddress
);
event NativeGasAdded(bytes32 indexed txHash, uint256 indexed logIndex, uint256 gasFeeAmount, address refundAddress);
event ExpressGasAdded(
bytes32 indexed txHash,
uint256 indexed logIndex,
address gasToken,
uint256 gasFeeAmount,
address refundAddress
);
event NativeExpressGasAdded(
bytes32 indexed txHash,
uint256 indexed logIndex,
uint256 gasFeeAmount,
address refundAddress
);
event Refunded(
bytes32 indexed txHash,
uint256 indexed logIndex,
address payable receiver,
address token,
uint256 amount
);
/**
* @notice Pay for gas for any type of contract execution on a destination chain.
* @dev This function is called on the source chain before calling the gateway to execute a remote contract.
* @dev If estimateOnChain is true, the function will estimate the gas cost and revert if the payment is insufficient.
* @param sender The address making the payment
* @param destinationChain The target chain where the contract call will be made
* @param destinationAddress The target address on the destination chain
* @param payload Data payload for the contract call
* @param executionGasLimit The gas limit for the contract call
* @param estimateOnChain Flag to enable on-chain gas estimation
* @param refundAddress The address where refunds, if any, should be sent
* @param params Additional parameters for gas payment. This can be left empty for normal contract call payments.
*/
function payGas(
address sender,
string calldata destinationChain,
string calldata destinationAddress,
bytes calldata payload,
uint256 executionGasLimit,
bool estimateOnChain,
address refundAddress,
bytes calldata params
) external payable;
/**
* @notice Pay for gas using ERC20 tokens for a contract call on a destination chain.
* @dev This function is called on the source chain before calling the gateway to execute a remote contract.
* @param sender The address making the payment
* @param destinationChain The target chain where the contract call will be made
* @param destinationAddress The target address on the destination chain
* @param payload Data payload for the contract call
* @param gasToken The address of the ERC20 token used to pay for gas
* @param gasFeeAmount The amount of tokens to pay for gas
* @param refundAddress The address where refunds, if any, should be sent
*/
function payGasForContractCall(
address sender,
string calldata destinationChain,
string calldata destinationAddress,
bytes calldata payload,
address gasToken,
uint256 gasFeeAmount,
address refundAddress
) external;
/**
* @notice Pay for gas using ERC20 tokens for a contract call with tokens on a destination chain.
* @dev This function is called on the source chain before calling the gateway to execute a remote contract.
* @param sender The address making the payment
* @param destinationChain The target chain where the contract call with tokens will be made
* @param destinationAddress The target address on the destination chain
* @param payload Data payload for the contract call with tokens
* @param symbol The symbol of the token to be sent with the call
* @param amount The amount of tokens to be sent with the call
* @param gasToken The address of the ERC20 token used to pay for gas
* @param gasFeeAmount The amount of tokens to pay for gas
* @param refundAddress The address where refunds, if any, should be sent
*/
function payGasForContractCallWithToken(
address sender,
string calldata destinationChain,
string calldata destinationAddress,
bytes calldata payload,
string calldata symbol,
uint256 amount,
address gasToken,
uint256 gasFeeAmount,
address refundAddress
) external;
/**
* @notice Pay for gas using native currency for a contract call on a destination chain.
* @dev This function is called on the source chain before calling the gateway to execute a remote contract.
* @param sender The address making the payment
* @param destinationChain The target chain where the contract call will be made
* @param destinationAddress The target address on the destination chain
* @param payload Data payload for the contract call
* @param refundAddress The address where refunds, if any, should be sent
*/
function payNativeGasForContractCall(
address sender,
string calldata destinationChain,
string calldata destinationAddress,
bytes calldata payload,
address refundAddress
) external payable;
/**
* @notice Pay for gas using native currency for a contract call with tokens on a destination chain.
* @dev This function is called on the source chain before calling the gateway to execute a remote contract.
* @param sender The address making the payment
* @param destinationChain The target chain where the contract call with tokens will be made
* @param destinationAddress The target address on the destination chain
* @param payload Data payload for the contract call with tokens
* @param symbol The symbol of the token to be sent with the call
* @param amount The amount of tokens to be sent with the call
* @param refundAddress The address where refunds, if any, should be sent
*/
function payNativeGasForContractCallWithToken(
address sender,
string calldata destinationChain,
string calldata destinationAddress,
bytes calldata payload,
string calldata symbol,
uint256 amount,
address refundAddress
) external payable;
/**
* @notice Pay for gas using ERC20 tokens for an express contract call on a destination chain.
* @dev This function is called on the source chain before calling the gateway to express execute a remote contract.
* @param sender The address making the payment
* @param destinationChain The target chain where the contract call will be made
* @param destinationAddress The target address on the destination chain
* @param payload Data payload for the contract call
* @param gasToken The address of the ERC20 token used to pay for gas
* @param gasFeeAmount The amount of tokens to pay for gas
* @param refundAddress The address where refunds, if any, should be sent
*/
function payGasForExpressCall(
address sender,
string calldata destinationChain,
string calldata destinationAddress,
bytes calldata payload,
address gasToken,
uint256 gasFeeAmount,
address refundAddress
) external;
/**
* @notice Pay for gas using ERC20 tokens for an express contract call with tokens on a destination chain.
* @dev This function is called on the source chain before calling the gateway to express execute a remote contract.
* @param sender The address making the payment
* @param destinationChain The target chain where the contract call with tokens will be made
* @param destinationAddress The target address on the destination chain
* @param payload Data payload for the contract call with tokens
* @param symbol The symbol of the token to be sent with the call
* @param amount The amount of tokens to be sent with the call
* @param gasToken The address of the ERC20 token used to pay for gas
* @param gasFeeAmount The amount of tokens to pay for gas
* @param refundAddress The address where refunds, if any, should be sent
*/
function payGasForExpressCallWithToken(
address sender,
string calldata destinationChain,
string calldata destinationAddress,
bytes calldata payload,
string calldata symbol,
uint256 amount,
address gasToken,
uint256 gasFeeAmount,
address refundAddress
) external;
/**
* @notice Pay for gas using native currency for an express contract call on a destination chain.
* @dev This function is called on the source chain before calling the gateway to execute a remote contract.
* @param sender The address making the payment
* @param destinationChain The target chain where the contract call will be made
* @param destinationAddress The target address on the destination chain
* @param payload Data payload for the contract call
* @param refundAddress The address where refunds, if any, should be sent
*/
function payNativeGasForExpressCall(
address sender,
string calldata destinationChain,
string calldata destinationAddress,
bytes calldata payload,
address refundAddress
) external payable;
/**
* @notice Pay for gas using native currency for an express contract call with tokens on a destination chain.
* @dev This function is called on the source chain before calling the gateway to execute a remote contract.
* @param sender The address making the payment
* @param destinationChain The target chain where the contract call with tokens will be made
* @param destinationAddress The target address on the destination chain
* @param payload Data payload for the contract call with tokens
* @param symbol The symbol of the token to be sent with the call
* @param amount The amount of tokens to be sent with the call
* @param refundAddress The address where refunds, if any, should be sent
*/
function payNativeGasForExpressCallWithToken(
address sender,
string calldata destinationChain,
string calldata destinationAddress,
bytes calldata payload,
string calldata symbol,
uint256 amount,
address refundAddress
) external payable;
/**
* @notice Add additional gas payment using ERC20 tokens after initiating a cross-chain call.
* @dev This function can be called on the source chain after calling the gateway to execute a remote contract.
* @param txHash The transaction hash of the cross-chain call
* @param logIndex The log index for the cross-chain call
* @param gasToken The ERC20 token address used to add gas
* @param gasFeeAmount The amount of tokens to add as gas
* @param refundAddress The address where refunds, if any, should be sent
*/
function addGas(
bytes32 txHash,
uint256 logIndex,
address gasToken,
uint256 gasFeeAmount,
address refundAddress
) external;
/**
* @notice Add additional gas payment using native currency after initiating a cross-chain call.
* @dev This function can be called on the source chain after calling the gateway to execute a remote contract.
* @param txHash The transaction hash of the cross-chain call
* @param logIndex The log index for the cross-chain call
* @param refundAddress The address where refunds, if any, should be sent
*/
function addNativeGas(
bytes32 txHash,
uint256 logIndex,
address refundAddress
) external payable;
/**
* @notice Add additional gas payment using ERC20 tokens after initiating an express cross-chain call.
* @dev This function can be called on the source chain after calling the gateway to express execute a remote contract.
* @param txHash The transaction hash of the cross-chain call
* @param logIndex The log index for the cross-chain call
* @param gasToken The ERC20 token address used to add gas
* @param gasFeeAmount The amount of tokens to add as gas
* @param refundAddress The address where refunds, if any, should be sent
*/
function addExpressGas(
bytes32 txHash,
uint256 logIndex,
address gasToken,
uint256 gasFeeAmount,
address refundAddress
) external;
/**
* @notice Add additional gas payment using native currency after initiating an express cross-chain call.
* @dev This function can be called on the source chain after calling the gateway to express execute a remote contract.
* @param txHash The transaction hash of the cross-chain call
* @param logIndex The log index for the cross-chain call
* @param refundAddress The address where refunds, if any, should be sent
*/
function addNativeExpressGas(
bytes32 txHash,
uint256 logIndex,
address refundAddress
) external payable;
/**
* @notice Updates the gas price for a specific chain.
* @dev This function is called by the gas oracle to update the gas prices for a specific chains.
* @param chains Array of chain names
* @param gasUpdates Array of gas updates
*/
function updateGasInfo(string[] calldata chains, GasInfo[] calldata gasUpdates) external;
/**
* @notice Allows the gasCollector to collect accumulated fees from the contract.
* @dev Use address(0) as the token address for native currency.
* @param receiver The address to receive the collected fees
* @param tokens Array of token addresses to be collected
* @param amounts Array of amounts to be collected for each respective token address
*/
function collectFees(
address payable receiver,
address[] calldata tokens,
uint256[] calldata amounts
) external;
/**
* @notice Refunds gas payment to the receiver in relation to a specific cross-chain transaction.
* @dev Only callable by the gasCollector.
* @dev Use address(0) as the token address to refund native currency.
* @param txHash The transaction hash of the cross-chain call
* @param logIndex The log index for the cross-chain call
* @param receiver The address to receive the refund
* @param token The token address to be refunded
* @param amount The amount to refund
*/
function refund(
bytes32 txHash,
uint256 logIndex,
address payable receiver,
address token,
uint256 amount
) external;
/**
* @notice Returns the address of the designated gas collector.
* @return address of the gas collector
*/
function gasCollector() external returns (address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(buffer, add(0x20, offset)))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.12; import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol"; import "../TokenUtils.sol"; /// @author Daimo, Inc /// @custom:security-contact [email protected] /// @notice Bridges assets. Specifically, it lets any relayer initiate a bridge /// transaction to another chain. interface IDaimoPayBridger { /// Emitted when a bridge transaction is initiated event BridgeInitiated( address fromAddress, address fromToken, uint256 fromAmount, uint256 toChainId, address toAddress, address toToken, uint256 toAmount, address refundAddress ); /// Determine the input token and amount required to achieve one of the /// given output options on a given chain. function getBridgeTokenIn( uint256 toChainId, TokenAmount[] memory bridgeTokenOutOptions ) external view returns (address bridgeTokenIn, uint256 inAmount); /// Initiate a bridge. Guarantee that one of the bridge token options /// (bridgeTokenOut, outAmount) shows up at toAddress on toChainId. /// Otherwise, revert. function sendToChain( uint256 toChainId, address toAddress, TokenAmount[] calldata bridgeTokenOutOptions, address refundAddress, bytes calldata extraData ) external; }
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IAxelarGateway } from '../interfaces/IAxelarGateway.sol';
import { IAxelarExecutable } from '../interfaces/IAxelarExecutable.sol';
/**
* @title AxelarExecutable
* @dev Abstract contract to be inherited by contracts that need to execute cross-chain commands via Axelar's Gateway.
* It implements the IAxelarExecutable interface.
*/
abstract contract AxelarExecutable is IAxelarExecutable {
/// @dev Reference to the Axelar Gateway contract.
address internal immutable gatewayAddress;
/**
* @dev Contract constructor that sets the Axelar Gateway address.
* Reverts if the provided address is the zero address.
* @param gateway_ The address of the Axelar Gateway contract.
*/
constructor(address gateway_) {
if (gateway_ == address(0)) revert InvalidAddress();
gatewayAddress = gateway_;
}
/**
* @notice Executes the cross-chain command after validating it with the Axelar Gateway.
* @dev This function ensures the call is approved by Axelar Gateway before execution.
* It uses a hash of the payload for validation and internally calls _execute for the actual command execution.
* Reverts if the validation fails.
* @param commandId The unique identifier of the cross-chain message being executed.
* @param sourceChain The name of the source chain from which the message originated.
* @param sourceAddress The address on the source chain that sent the message.
* @param payload The payload of the message payload.
*/
function execute(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes calldata payload
) external virtual {
bytes32 payloadHash = keccak256(payload);
if (!gateway().validateContractCall(commandId, sourceChain, sourceAddress, payloadHash))
revert NotApprovedByGateway();
_execute(commandId, sourceChain, sourceAddress, payload);
}
/**
* @dev Internal virtual function to be overridden by child contracts to execute the command.
* It allows child contracts to define their custom command execution logic.
* @param commandId The identifier of the command to execute.
* @param sourceChain The name of the source chain from which the command originated.
* @param sourceAddress The address on the source chain that sent the command.
* @param payload The payload of the command to be executed.
*/
function _execute(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes calldata payload
) internal virtual;
/**
* @notice Returns the address of the AxelarGateway contract.
* @return The Axelar Gateway instance.
*/
function gateway() public view returns (IAxelarGateway) {
return IAxelarGateway(gatewayAddress);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IAxelarGatewayWithToken } from '../interfaces/IAxelarGatewayWithToken.sol';
import { IAxelarExecutableWithToken } from '../interfaces/IAxelarExecutableWithToken.sol';
import { AxelarExecutable } from './AxelarExecutable.sol';
/**
* @title AxelarExecutableWithToken
* @dev Abstract contract to be inherited by contracts that need to execute cross-chain commands involving tokens via Axelar's Gateway.
* It extends AxelarExecutable and implements the IAxelarExecutableWithToken interface.
*/
abstract contract AxelarExecutableWithToken is IAxelarExecutableWithToken, AxelarExecutable {
/**
* @dev Contract constructor that sets the Axelar Gateway With Token address and initializes AxelarExecutable.
* @param gateway_ The address of the Axelar Gateway With Token contract.
*/
constructor(address gateway_) AxelarExecutable(gateway_) {}
/**
* @notice Executes the cross-chain command with token transfer after validating it with the Axelar Gateway.
* @dev This function ensures the call is approved by Axelar Gateway With Token before execution.
* It uses a hash of the payload for validation and calls _executeWithToken for the actual command execution.
* Reverts if the validation fails.
* @param commandId The unique identifier of the cross-chain message being executed.
* @param sourceChain The name of the source chain from which the message originated.
* @param sourceAddress The address on the source chain that sent the message.
* @param payload The payload of the message payload.
* @param tokenSymbol The symbol of the token to be transferred.
* @param amount The amount of tokens to be transferred.
*/
function executeWithToken(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes calldata payload,
string calldata tokenSymbol,
uint256 amount
) external virtual {
bytes32 payloadHash = keccak256(payload);
if (
!gatewayWithToken().validateContractCallAndMint(
commandId,
sourceChain,
sourceAddress,
payloadHash,
tokenSymbol,
amount
)
) revert NotApprovedByGateway();
_executeWithToken(commandId, sourceChain, sourceAddress, payload, tokenSymbol, amount);
}
/**
* @dev Internal virtual function to be overridden by child contracts to execute the command with token transfer.
* It allows child contracts to define their custom command execution logic involving tokens.
* @param commandId The unique identifier of the cross-chain message being executed.
* @param sourceChain The name of the source chain from which the message originated.
* @param sourceAddress The address on the source chain that sent the message.
* @param payload The payload of the message payload.
* @param tokenSymbol The symbol of the token to be transferred.
* @param amount The amount of tokens to be transferred.
*/
function _executeWithToken(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes calldata payload,
string calldata tokenSymbol,
uint256 amount
) internal virtual;
/**
* @notice Returns the address of the IAxelarGatewayWithToken contract.
* @return The Axelar Gateway with Token instance.
*/
function gatewayWithToken() internal view returns (IAxelarGatewayWithToken) {
return IAxelarGatewayWithToken(gatewayAddress);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IAxelarGateway } from './IAxelarGateway.sol';
/**
* @title IAxelarExecutable
* @dev Interface for a contract that is executable by Axelar Gateway's cross-chain message passing.
* It defines a standard interface to execute commands sent from another chain.
*/
interface IAxelarExecutable {
/**
* @dev Thrown when a function is called with an invalid address.
*/
error InvalidAddress();
/**
* @dev Thrown when the call is not approved by the Axelar Gateway.
*/
error NotApprovedByGateway();
/**
* @notice Returns the address of the AxelarGateway contract.
* @return The Axelar Gateway contract associated with this executable contract.
*/
function gateway() external view returns (IAxelarGateway);
/**
* @notice Executes the specified command sent from another chain.
* @dev This function is called by the Axelar Gateway to carry out cross-chain commands.
* Reverts if the call is not approved by the gateway or other checks fail.
* @param commandId The identifier of the command to execute.
* @param sourceChain The name of the source chain from where the command originated.
* @param sourceAddress The address on the source chain that sent the command.
* @param payload The payload of the command to be executed. This typically includes the function selector and encoded arguments.
*/
function execute(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes calldata payload
) external;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IAxelarExecutable } from './IAxelarExecutable.sol';
/**
* @title IAxelarExecutableWithToken
* @dev Interface for a contract that can execute commands from Axelar Gateway involving token transfers.
* It extends IAxelarExecutable to include token-related functionality.
*/
interface IAxelarExecutableWithToken is IAxelarExecutable {
/**
* @notice Executes the specified command sent from another chain and includes a token transfer.
* @dev This function should be implemented to handle incoming commands that include token transfers.
* It will be called by an implementation of `IAxelarGatewayWithToken`.
* @param commandId The identifier of the command to execute.
* @param sourceChain The name of the source chain from where the command originated.
* @param sourceAddress The address on the source chain that sent the command.
* @param payload The payload of the command to be executed.
* @param tokenSymbol The symbol of the token to be transferred with this command.
* @param amount The amount of tokens to be transferred with this command.
*/
function executeWithToken(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes calldata payload,
string calldata tokenSymbol,
uint256 amount
) external;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IAxelarExpressExecutable } from './IAxelarExpressExecutable.sol';
import { IAxelarExecutableWithToken } from './IAxelarExecutableWithToken.sol';
/**
* @title IAxelarExpressExecutableWithToken
* @notice Interface for the Axelar Express Executable contract with token.
*/
interface IAxelarExpressExecutableWithToken is IAxelarExpressExecutable, IAxelarExecutableWithToken {
/**
* @notice Emitted when an express execution with a token is successfully performed.
* @param commandId The unique identifier for the command.
* @param sourceChain The source chain.
* @param sourceAddress The source address.
* @param payloadHash The hash of the payload.
* @param symbol The token symbol.
* @param amount The amount of tokens.
* @param expressExecutor The address of the express executor.
*/
event ExpressExecutedWithToken(
bytes32 indexed commandId,
string sourceChain,
string sourceAddress,
bytes32 payloadHash,
string symbol,
uint256 indexed amount,
address indexed expressExecutor
);
/**
* @notice Emitted when an express execution with a token is fulfilled.
* @param commandId The commandId for the contractCallWithToken.
* @param sourceChain The source chain.
* @param sourceAddress The source address.
* @param payloadHash The hash of the payload.
* @param symbol The token symbol.
* @param amount The amount of tokens.
* @param expressExecutor The address of the express executor.
*/
event ExpressExecutionWithTokenFulfilled(
bytes32 indexed commandId,
string sourceChain,
string sourceAddress,
bytes32 payloadHash,
string symbol,
uint256 indexed amount,
address indexed expressExecutor
);
/**
* @notice Returns the express executor with token for a given command.
* @param commandId The commandId for the contractCallWithToken.
* @param sourceChain The source chain.
* @param sourceAddress The source address.
* @param payloadHash The hash of the payload.
* @param symbol The token symbol.
* @param amount The amount of tokens.
* @return expressExecutor The address of the express executor.
*/
function getExpressExecutorWithToken(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes32 payloadHash,
string calldata symbol,
uint256 amount
) external view returns (address expressExecutor);
/**
* @notice Express executes a contract call with token.
* @param commandId The commandId for the contractCallWithToken.
* @param sourceChain The source chain.
* @param sourceAddress The source address.
* @param payload The payload data.
* @param symbol The token symbol.
* @param amount The amount of token.
*/
function expressExecuteWithToken(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes calldata payload,
string calldata symbol,
uint256 amount
) external payable;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
abstract contract ExpressExecutorTracker {
error ExpressExecutorAlreadySet();
bytes32 internal constant PREFIX_EXPRESS_EXECUTE = keccak256('express-execute');
bytes32 internal constant PREFIX_EXPRESS_EXECUTE_WITH_TOKEN = keccak256('express-execute-with-token');
function _expressExecuteSlot(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes32 payloadHash
) internal pure returns (bytes32 slot) {
slot = keccak256(abi.encode(PREFIX_EXPRESS_EXECUTE, commandId, sourceChain, sourceAddress, payloadHash));
}
function _expressExecuteWithTokenSlot(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes32 payloadHash,
string calldata symbol,
uint256 amount
) internal pure returns (bytes32 slot) {
slot = keccak256(
abi.encode(
PREFIX_EXPRESS_EXECUTE_WITH_TOKEN,
commandId,
sourceChain,
sourceAddress,
payloadHash,
symbol,
amount
)
);
}
function _getExpressExecutor(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes32 payloadHash
) internal view returns (address expressExecutor) {
bytes32 slot = _expressExecuteSlot(commandId, sourceChain, sourceAddress, payloadHash);
assembly {
expressExecutor := sload(slot)
}
}
function _getExpressExecutorWithToken(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes32 payloadHash,
string calldata symbol,
uint256 amount
) internal view returns (address expressExecutor) {
bytes32 slot = _expressExecuteWithTokenSlot(commandId, sourceChain, sourceAddress, payloadHash, symbol, amount);
assembly {
expressExecutor := sload(slot)
}
}
function _setExpressExecutor(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes32 payloadHash,
address expressExecutor
) internal {
bytes32 slot = _expressExecuteSlot(commandId, sourceChain, sourceAddress, payloadHash);
address currentExecutor;
assembly {
currentExecutor := sload(slot)
}
if (currentExecutor != address(0)) revert ExpressExecutorAlreadySet();
assembly {
sstore(slot, expressExecutor)
}
}
function _setExpressExecutorWithToken(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes32 payloadHash,
string calldata symbol,
uint256 amount,
address expressExecutor
) internal {
bytes32 slot = _expressExecuteWithTokenSlot(commandId, sourceChain, sourceAddress, payloadHash, symbol, amount);
address currentExecutor;
assembly {
currentExecutor := sload(slot)
}
if (currentExecutor != address(0)) revert ExpressExecutorAlreadySet();
assembly {
sstore(slot, expressExecutor)
}
}
function _popExpressExecutor(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes32 payloadHash
) internal returns (address expressExecutor) {
bytes32 slot = _expressExecuteSlot(commandId, sourceChain, sourceAddress, payloadHash);
assembly {
expressExecutor := sload(slot)
if expressExecutor {
sstore(slot, 0)
}
}
}
function _popExpressExecutorWithToken(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes32 payloadHash,
string calldata symbol,
uint256 amount
) internal returns (address expressExecutor) {
bytes32 slot = _expressExecuteWithTokenSlot(commandId, sourceChain, sourceAddress, payloadHash, symbol, amount);
assembly {
expressExecutor := sload(slot)
if expressExecutor {
sstore(slot, 0)
}
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IERC20 } from '../interfaces/IERC20.sol';
error TokenTransferFailed();
/*
* @title SafeTokenCall
* @dev This library is used for performing safe token transfers.
*/
library SafeTokenCall {
/*
* @notice Make a safe call to a token contract.
* @param token The token contract to interact with.
* @param callData The function call data.
* @throws TokenTransferFailed error if transfer of token is not successful.
*/
function safeCall(IERC20 token, bytes memory callData) internal {
(bool success, bytes memory returnData) = address(token).call(callData);
bool transferred = success && (returnData.length == uint256(0) || abi.decode(returnData, (bool)));
if (!transferred || address(token).code.length == 0) revert TokenTransferFailed();
}
}
/*
* @title SafeTokenTransfer
* @dev This library safely transfers tokens from the contract to a recipient.
*/
library SafeTokenTransfer {
/*
* @notice Transfer tokens to a recipient.
* @param token The token contract.
* @param receiver The recipient of the tokens.
* @param amount The amount of tokens to transfer.
*/
function safeTransfer(
IERC20 token,
address receiver,
uint256 amount
) internal {
SafeTokenCall.safeCall(token, abi.encodeWithSelector(IERC20.transfer.selector, receiver, amount));
}
}
/*
* @title SafeTokenTransferFrom
* @dev This library helps to safely transfer tokens on behalf of a token holder.
*/
library SafeTokenTransferFrom {
/*
* @notice Transfer tokens on behalf of a token holder.
* @param token The token contract.
* @param from The address of the token holder.
* @param to The address the tokens are to be sent to.
* @param amount The amount of tokens to be transferred.
*/
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 amount
) internal {
SafeTokenCall.safeCall(token, abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, amount));
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
error InvalidAccount();
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title IAxelarGateway
* @dev Interface for the Axelar Gateway that supports general message passing and contract call execution.
*/
interface IAxelarGateway {
/**
* @notice Emitted when a contract call is made through the gateway.
* @dev Logs the attempt to call a contract on another chain.
* @param sender The address of the sender who initiated the contract call.
* @param destinationChain The name of the destination chain.
* @param destinationContractAddress The address of the contract on the destination chain.
* @param payloadHash The keccak256 hash of the sent payload data.
* @param payload The payload data used for the contract call.
*/
event ContractCall(
address indexed sender,
string destinationChain,
string destinationContractAddress,
bytes32 indexed payloadHash,
bytes payload
);
/**
* @notice Sends a contract call to another chain.
* @dev Initiates a cross-chain contract call through the gateway to the specified destination chain and contract.
* @param destinationChain The name of the destination chain.
* @param contractAddress The address of the contract on the destination chain.
* @param payload The payload data to be used in the contract call.
*/
function callContract(
string calldata destinationChain,
string calldata contractAddress,
bytes calldata payload
) external;
/**
* @notice Checks if a contract call is approved.
* @dev Determines whether a given contract call, identified by the commandId and payloadHash, is approved.
* @param commandId The identifier of the command to check.
* @param sourceChain The name of the source chain.
* @param sourceAddress The address of the sender on the source chain.
* @param contractAddress The address of the contract where the call will be executed.
* @param payloadHash The keccak256 hash of the payload data.
* @return True if the contract call is approved, false otherwise.
*/
function isContractCallApproved(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
address contractAddress,
bytes32 payloadHash
) external view returns (bool);
/**
* @notice Validates and approves a contract call.
* @dev Validates the given contract call information and marks it as approved if valid.
* @param commandId The identifier of the command to validate.
* @param sourceChain The name of the source chain.
* @param sourceAddress The address of the sender on the source chain.
* @param payloadHash The keccak256 hash of the payload data.
* @return True if the contract call is validated and approved, false otherwise.
*/
function validateContractCall(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes32 payloadHash
) external returns (bool);
/**
* @notice Checks if a command has been executed.
* @dev Determines whether a command, identified by the commandId, has been executed.
* @param commandId The identifier of the command to check.
* @return True if the command has been executed, false otherwise.
*/
function isCommandExecuted(bytes32 commandId) external view returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title GasEstimationType
* @notice This enum represents the gas estimation types for different chains.
*/
enum GasEstimationType {
Default,
OptimismEcotone,
OptimismBedrock,
Arbitrum,
Scroll
}
/**
* @title GasInfo
* @notice This struct represents the gas pricing information for a specific chain.
* @dev Smaller uint types are used for efficient struct packing to save storage costs.
*/
struct GasInfo {
/// @dev Custom gas pricing rule, such as L1 data fee on L2s
uint64 gasEstimationType;
/// @dev Scalar value needed for specific gas estimation types, expected to be less than 1e10
uint64 l1FeeScalar;
/// @dev Axelar base fee for cross-chain message approval on destination, in terms of source native gas token
uint128 axelarBaseFee;
/// @dev Gas price of destination chain, in terms of the source chain token, i.e dest_gas_price * dest_token_market_price / src_token_market_price
uint128 relativeGasPrice;
/// @dev Needed for specific gas estimation types. Blob base fee of destination chain, in terms of the source chain token, i.e dest_blob_base_fee * dest_token_market_price / src_token_market_price
uint128 relativeBlobBaseFee;
/// @dev Axelar express fee for express execution, in terms of source chain token
uint128 expressFee;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { GasEstimationType, GasInfo } from '../types/GasEstimationTypes.sol';
/**
* @title IInterchainGasEstimation Interface
* @notice This is an interface for the InterchainGasEstimation contract
* which allows for estimating gas fees for cross-chain communication on the Axelar network.
*/
interface IInterchainGasEstimation {
error UnsupportedEstimationType(GasEstimationType gasEstimationType);
/**
* @notice Event emitted when the gas price for a specific chain is updated.
* @param chain The name of the chain
* @param info The gas info for the chain
*/
event GasInfoUpdated(string chain, GasInfo info);
/**
* @notice Returns the gas price for a specific chain.
* @param chain The name of the chain
* @return gasInfo The gas info for the chain
*/
function getGasInfo(string calldata chain) external view returns (GasInfo memory);
/**
* @notice Estimates the gas fee for a cross-chain contract call.
* @param destinationChain Axelar registered name of the destination chain
* @param destinationAddress Destination contract address being called
* @param executionGasLimit The gas limit to be used for the destination contract execution,
* e.g. pass in 200k if your app consumes needs upto 200k for this contract call
* @param params Additional parameters for the gas estimation
* @return gasEstimate The cross-chain gas estimate, in terms of source chain's native gas token that should be forwarded to the gas service.
*/
function estimateGasFee(
string calldata destinationChain,
string calldata destinationAddress,
bytes calldata payload,
uint256 executionGasLimit,
bytes calldata params
) external view returns (uint256 gasEstimate);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IOwnable } from './IOwnable.sol';
import { IImplementation } from './IImplementation.sol';
// General interface for upgradable contracts
interface IUpgradable is IOwnable, IImplementation {
error InvalidCodeHash();
error InvalidImplementation();
error SetupFailed();
event Upgraded(address indexed newImplementation);
function implementation() external view returns (address);
function upgrade(
address newImplementation,
bytes32 newImplementationCodeHash,
bytes calldata params
) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.12;
import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
/// Asset amount, e.g. $100 USDC or 0.1 ETH
struct TokenAmount {
/// Zero address = native asset, e.g. ETH
IERC20 token;
uint256 amount;
}
/// Event emitted when native tokens (ETH, etc.) are transferred
event NativeTransfer(address indexed from, address indexed to, uint256 value);
/// Utility functions that work for both ERC20 and native tokens.
library TokenUtils {
using SafeERC20 for IERC20;
/// Returns ERC20 or ETH balance.
function getBalanceOf(
IERC20 token,
address addr
) internal view returns (uint256) {
if (address(token) == address(0)) {
return addr.balance;
} else {
return token.balanceOf(addr);
}
}
/// Approves a token transfer.
function approve(IERC20 token, address spender, uint256 amount) internal {
if (address(token) != address(0)) {
token.forceApprove({spender: spender, value: amount});
} // Do nothing for native token.
}
/// Sends an ERC20 or ETH transfer. For ETH, verify call success.
function transfer(
IERC20 token,
address payable recipient,
uint256 amount
) internal {
if (address(token) != address(0)) {
token.safeTransfer({to: recipient, value: amount});
} else {
// Native token transfer
(bool success, ) = recipient.call{value: amount}("");
require(success, "TokenUtils: ETH transfer failed");
}
}
/// Sends an ERC20 or ETH transfer. Returns true if successful.
function tryTransfer(
IERC20 token,
address payable recipient,
uint256 amount
) internal returns (bool) {
if (address(token) != address(0)) {
return token.trySafeTransfer({to: recipient, value: amount});
} else {
(bool success, ) = recipient.call{value: amount}("");
return success;
}
}
/// Sends an ERC20 transfer.
function transferFrom(
IERC20 token,
address from,
address to,
uint256 amount
) internal {
require(
address(token) != address(0),
"TokenUtils: ETH transferFrom must be caller"
);
token.safeTransferFrom({from: from, to: to, value: amount});
}
/// Sends any token balance in the contract to the recipient.
function transferBalance(
IERC20 token,
address payable recipient
) internal returns (uint256) {
uint256 balance = getBalanceOf({token: token, addr: address(this)});
if (balance > 0) {
transfer({token: token, recipient: recipient, amount: balance});
}
return balance;
}
/// Check that the address has enough of at least one of the tokenAmounts.
/// Returns the index of the first token that has sufficient balance, or
/// the length of the tokenAmounts array if no token has sufficient balance.
function checkBalance(
TokenAmount[] calldata tokenAmounts
) internal view returns (uint256) {
uint256 n = tokenAmounts.length;
for (uint256 i = 0; i < n; ++i) {
TokenAmount calldata tokenAmount = tokenAmounts[i];
uint256 balance = getBalanceOf({
token: tokenAmount.token,
addr: address(this)
});
if (balance >= tokenAmount.amount) {
return i;
}
}
return n;
}
/// @notice Converts a token amount between different decimal representations.
/// @param amount The token amount in the source decimal format.
/// @param fromDecimals Decimals of the source token (e.g., 6 for USDC).
/// @param toDecimals Decimals of the destination token (e.g., 18 for DAI).
/// @param roundUp If true, rounds up when scaling down (losing precision).
/// Use true when calculating required input amounts (user pays more).
/// Use false when calculating output amounts (user receives less).
/// @return The converted amount in the destination decimal format.
function convertTokenAmountDecimals(
uint256 amount,
uint256 fromDecimals,
uint256 toDecimals,
bool roundUp
) internal pure returns (uint256) {
if (toDecimals == fromDecimals) {
return amount;
} else if (toDecimals > fromDecimals) {
return amount * 10 ** (toDecimals - fromDecimals);
} else {
uint256 decimalDiff = fromDecimals - toDecimals;
uint256 divisor = 10 ** decimalDiff;
if (roundUp) {
return (amount + divisor - 1) / divisor;
} else {
return amount / divisor;
}
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IAxelarExecutable } from './IAxelarExecutable.sol';
/**
* @title IAxelarExpressExecutable
* @notice Interface for the Axelar Express Executable contract.
*/
interface IAxelarExpressExecutable is IAxelarExecutable {
// Custom errors
error AlreadyExecuted();
error InsufficientValue();
/**
* @notice Emitted when an express execution is successfully performed.
* @param commandId The unique identifier for the command.
* @param sourceChain The source chain.
* @param sourceAddress The source address.
* @param payloadHash The hash of the payload.
* @param expressExecutor The address of the express executor.
*/
event ExpressExecuted(
bytes32 indexed commandId,
string sourceChain,
string sourceAddress,
bytes32 payloadHash,
address indexed expressExecutor
);
/**
* @notice Emitted when an express execution is fulfilled.
* @param commandId The commandId for the contractCall.
* @param sourceChain The source chain.
* @param sourceAddress The source address.
* @param payloadHash The hash of the payload.
* @param expressExecutor The address of the express executor.
*/
event ExpressExecutionFulfilled(
bytes32 indexed commandId,
string sourceChain,
string sourceAddress,
bytes32 payloadHash,
address indexed expressExecutor
);
/**
* @notice Returns the express executor for a given command.
* @param commandId The commandId for the contractCall.
* @param sourceChain The source chain.
* @param sourceAddress The source address.
* @param payloadHash The hash of the payload.
* @return expressExecutor The address of the express executor.
*/
function getExpressExecutor(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes32 payloadHash
) external view returns (address expressExecutor);
/**
* @notice Express executes a contract call.
* @param commandId The commandId for the contractCall.
* @param sourceChain The source chain.
* @param sourceAddress The source address.
* @param payload The payload data.
*/
function expressExecute(
bytes32 commandId,
string calldata sourceChain,
string calldata sourceAddress,
bytes calldata payload
) external payable;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title IOwnable Interface
* @notice IOwnable is an interface that abstracts the implementation of a
* contract with ownership control features. It's commonly used in upgradable
* contracts and includes the functionality to get current owner, transfer
* ownership, and propose and accept ownership.
*/
interface IOwnable {
error NotOwner();
error InvalidOwner();
error InvalidOwnerAddress();
event OwnershipTransferStarted(address indexed newOwner);
event OwnershipTransferred(address indexed newOwner);
/**
* @notice Returns the current owner of the contract.
* @return address The address of the current owner
*/
function owner() external view returns (address);
/**
* @notice Returns the address of the pending owner of the contract.
* @return address The address of the pending owner
*/
function pendingOwner() external view returns (address);
/**
* @notice Transfers ownership of the contract to a new address
* @param newOwner The address to transfer ownership to
*/
function transferOwnership(address newOwner) external;
/**
* @notice Proposes to transfer the contract's ownership to a new address.
* The new owner needs to accept the ownership explicitly.
* @param newOwner The address to transfer ownership to
*/
function proposeOwnership(address newOwner) external;
/**
* @notice Transfers ownership to the pending owner.
* @dev Can only be called by the pending owner
*/
function acceptOwnership() external;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IContractIdentifier } from './IContractIdentifier.sol';
interface IImplementation is IContractIdentifier {
error NotProxy();
function setup(bytes calldata data) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
// General interface for upgradable contracts
interface IContractIdentifier {
/**
* @notice Returns the contract ID. It can be used as a check during upgrades.
* @dev Meant to be overridden in derived contracts.
* @return bytes32 The contract ID
*/
function contractId() external pure returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}{
"remappings": [
"@axelar-network/=lib/axelar-gmp-sdk-solidity/",
"forge-std/=lib/forge-std/src/",
"openzeppelin-contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/",
"@openzeppelin/contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/",
"@layerzerolabs/oft-evm/=lib/devtools/packages/oft-evm/",
"@layerzerolabs/oapp-evm/=lib/devtools/packages/oapp-evm/",
"@layerzerolabs/lz-evm-protocol-v2/=lib/LayerZero-v2/packages/layerzero-v2/evm/protocol/",
"@layerzerolabs/lz-evm-messagelib-v2/=lib/LayerZero-v2/packages/layerzero-v2/evm/messagelib/",
"@layerzerolabs/lz-evm-oapp-v2/=lib/LayerZero-v2/packages/layerzero-v2/evm/oapp/",
"@stargatefinance/stg-evm-v2/=lib/stargate-v2/packages/stg-evm-v2/",
"@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"LayerZero-v2/=lib/LayerZero-v2/",
"axelar-gmp-sdk-solidity/=lib/axelar-gmp-sdk-solidity/contracts/",
"devtools/=lib/devtools/packages/toolbox-foundry/src/",
"ds-test/=lib/solmate/lib/ds-test/src/",
"erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
"halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
"solmate/=lib/solmate/src/",
"stargate-v2/=lib/stargate-v2/packages/stg-evm-v2/src/"
],
"optimizer": {
"enabled": true,
"runs": 999999
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "london",
"viaIR": true
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"contract IAxelarGatewayWithToken","name":"_axelarGateway","type":"address"},{"internalType":"contract IAxelarGasService","name":"_axelarGasService","type":"address"},{"internalType":"uint256[]","name":"_toChainIds","type":"uint256[]"},{"components":[{"internalType":"string","name":"destChainName","type":"string"},{"internalType":"address","name":"bridgeTokenIn","type":"address"},{"internalType":"address","name":"bridgeTokenOut","type":"address"},{"internalType":"string","name":"tokenSymbol","type":"string"},{"internalType":"address","name":"receiverContract","type":"address"},{"internalType":"uint256","name":"nativeFee","type":"uint256"}],"internalType":"struct DaimoPayAxelarBridger.AxelarBridgeRoute[]","name":"_bridgeRoutes","type":"tuple[]"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyExecuted","type":"error"},{"inputs":[],"name":"ExpressExecutorAlreadySet","type":"error"},{"inputs":[],"name":"InsufficientValue","type":"error"},{"inputs":[],"name":"InvalidAddress","type":"error"},{"inputs":[],"name":"NotApprovedByGateway","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"length","type":"uint256"}],"name":"StringsInsufficientHexLength","type":"error"},{"inputs":[],"name":"TokenTransferFailed","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"fromAddress","type":"address"},{"indexed":false,"internalType":"address","name":"fromToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"fromAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"toChainId","type":"uint256"},{"indexed":false,"internalType":"address","name":"toAddress","type":"address"},{"indexed":false,"internalType":"address","name":"toToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"toAmount","type":"uint256"},{"indexed":false,"internalType":"address","name":"refundAddress","type":"address"}],"name":"BridgeInitiated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"commandId","type":"bytes32"},{"indexed":false,"internalType":"string","name":"sourceChain","type":"string"},{"indexed":false,"internalType":"string","name":"sourceAddress","type":"string"},{"indexed":false,"internalType":"bytes32","name":"payloadHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"expressExecutor","type":"address"}],"name":"ExpressExecuted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"commandId","type":"bytes32"},{"indexed":false,"internalType":"string","name":"sourceChain","type":"string"},{"indexed":false,"internalType":"string","name":"sourceAddress","type":"string"},{"indexed":false,"internalType":"bytes32","name":"payloadHash","type":"bytes32"},{"indexed":false,"internalType":"string","name":"symbol","type":"string"},{"indexed":true,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":true,"internalType":"address","name":"expressExecutor","type":"address"}],"name":"ExpressExecutedWithToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"commandId","type":"bytes32"},{"indexed":false,"internalType":"string","name":"sourceChain","type":"string"},{"indexed":false,"internalType":"string","name":"sourceAddress","type":"string"},{"indexed":false,"internalType":"bytes32","name":"payloadHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"expressExecutor","type":"address"}],"name":"ExpressExecutionFulfilled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"commandId","type":"bytes32"},{"indexed":false,"internalType":"string","name":"sourceChain","type":"string"},{"indexed":false,"internalType":"string","name":"sourceAddress","type":"string"},{"indexed":false,"internalType":"bytes32","name":"payloadHash","type":"bytes32"},{"indexed":false,"internalType":"string","name":"symbol","type":"string"},{"indexed":true,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":true,"internalType":"address","name":"expressExecutor","type":"address"}],"name":"ExpressExecutionWithTokenFulfilled","type":"event"},{"inputs":[],"name":"axelarGasService","outputs":[{"internalType":"contract IAxelarGasService","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"axelarGateway","outputs":[{"internalType":"contract IAxelarGatewayWithToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"toChainId","type":"uint256"}],"name":"bridgeRouteMapping","outputs":[{"internalType":"string","name":"destChainName","type":"string"},{"internalType":"address","name":"bridgeTokenIn","type":"address"},{"internalType":"address","name":"bridgeTokenOut","type":"address"},{"internalType":"string","name":"tokenSymbol","type":"string"},{"internalType":"address","name":"receiverContract","type":"address"},{"internalType":"uint256","name":"nativeFee","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"commandId","type":"bytes32"},{"internalType":"string","name":"sourceChain","type":"string"},{"internalType":"string","name":"sourceAddress","type":"string"},{"internalType":"bytes","name":"payload","type":"bytes"}],"name":"execute","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"commandId","type":"bytes32"},{"internalType":"string","name":"sourceChain","type":"string"},{"internalType":"string","name":"sourceAddress","type":"string"},{"internalType":"bytes","name":"payload","type":"bytes"},{"internalType":"string","name":"tokenSymbol","type":"string"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"executeWithToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"commandId","type":"bytes32"},{"internalType":"string","name":"sourceChain","type":"string"},{"internalType":"string","name":"sourceAddress","type":"string"},{"internalType":"bytes","name":"payload","type":"bytes"}],"name":"expressExecute","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"commandId","type":"bytes32"},{"internalType":"string","name":"sourceChain","type":"string"},{"internalType":"string","name":"sourceAddress","type":"string"},{"internalType":"bytes","name":"payload","type":"bytes"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"expressExecuteWithToken","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"gateway","outputs":[{"internalType":"contract IAxelarGateway","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"toChainId","type":"uint256"},{"components":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"internalType":"struct TokenAmount[]","name":"bridgeTokenOutOptions","type":"tuple[]"}],"name":"getBridgeTokenIn","outputs":[{"internalType":"address","name":"bridgeTokenIn","type":"address"},{"internalType":"uint256","name":"inAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"commandId","type":"bytes32"},{"internalType":"string","name":"sourceChain","type":"string"},{"internalType":"string","name":"sourceAddress","type":"string"},{"internalType":"bytes32","name":"payloadHash","type":"bytes32"}],"name":"getExpressExecutor","outputs":[{"internalType":"address","name":"expressExecutor","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"commandId","type":"bytes32"},{"internalType":"string","name":"sourceChain","type":"string"},{"internalType":"string","name":"sourceAddress","type":"string"},{"internalType":"bytes32","name":"payloadHash","type":"bytes32"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"getExpressExecutorWithToken","outputs":[{"internalType":"address","name":"expressExecutor","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"toChainId","type":"uint256"},{"internalType":"address","name":"toAddress","type":"address"},{"components":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"internalType":"struct TokenAmount[]","name":"bridgeTokenOutOptions","type":"tuple[]"},{"internalType":"address","name":"refundAddress","type":"address"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"sendToChain","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]Contract Creation Code
60e0604052346105e457612c4880380380610019816105f9565b9283398101906080818303126105e45780516001600160a01b038116908181036105e4576020830151916001600160a01b03831683036105e45760408401516001600160401b0381116105e45784019385601f860112156105e4578451946100886100838761061e565b6105f9565b9560208088838152019160051b830101918883116105e457602001905b8282106105e9575050506060810151906001600160401b0382116105e4570185601f820112156105e4578051906100de6100838361061e565b9660208089858152019360051b830101918183116105e45760208101935b83851061051157505050505080156105005760805260a05260c052805191805183036104bb57826000925b8184106101905760405161256990816106df823960805181818161016e0152818161077401528181610a2401528181610bb00152611743015260a0518181816103ee015281816111a701526116d4015260c051818181610941015281816110d601526114e90152f35b61019a84846106b4565b51926101a685836106b4565b516000526000602052604060002094845195865160018060401b0381116103e0578154600181811c911680156104b1575b60208210146103c057601f8111610469575b50602097601f8211600114610401579781929394959697986000926103f6575b50508160011b916000199060031b1c19161781555b60208601516001820180546001600160a01b039283166001600160a01b03199182161790915560408801516002840180549190931691161790556060860151805190969060038301906001600160401b0381116103e0578154600181811c911680156103d6575b60208210146103c057601f8111610378575b50602098601f821160011461030757918160059492600198999a9b60a0956000926102fc575b5050600019600383901b1c191690881b1790555b608081015160048501805488851b899003928316921916919091179055015191015501929091610127565b015190508c806102bd565b98601f1982169983600052816000209a60005b818110610360575092600198999a9b60a095938a93836005999710610347575b505050811b0190556102d1565b015160001960f88460031b161c191690558c808061033a565b828401518d556001909c019b6020938401930161031a565b826000526020600020601f830160051c810191602084106103b6575b601f0160051c01905b8181106103aa5750610297565b6000815560010161039d565b9091508190610394565b634e487b7160e01b600052602260045260246000fd5b90607f1690610285565b634e487b7160e01b600052604160045260246000fd5b015190508880610209565b601f1982169883600052806000209160005b8b8110610451575083600195969798999a9b10610438575b505050811b01815561021e565b015160001960f88460031b161c1916905588808061042b565b91926020600181928685015181550194019201610413565b826000526020600020601f830160051c810191602084106104a7575b601f0160051c01905b81811061049b57506101e9565b6000815560010161048e565b9091508190610485565b90607f16906101d7565b60405162461bcd60e51b815260206004820152601f60248201527f445041423a2077726f6e6720627269646765526f75746573206c656e677468006044820152606490fd5b63e6c4247b60e01b60005260046000fd5b84516001600160401b0381116105e457820160c0818503601f1901126105e4576040519160c083016001600160401b038111848210176103e05760405260208201516001600160401b0381116105e45785602061057092850101610635565b835261057e604083016106a0565b602084015261058f606083016106a0565b60408401526080820151926001600160401b0384116105e45760c0836105bc886020809881980101610635565b60608401526105cd60a082016106a0565b6080840152015160a08201528152019401936100fc565b600080fd5b81518152602091820191016100a5565b6040519190601f01601f191682016001600160401b038111838210176103e057604052565b6001600160401b0381116103e05760051b60200190565b81601f820112156105e4578051906001600160401b0382116103e057610664601f8301601f19166020016105f9565b92828452602083830101116105e45760005b82811061068b57505060206000918301015290565b80602080928401015182828701015201610676565b51906001600160a01b03821682036105e457565b80518210156106c85760209160051b010190565b634e487b7160e01b600052603260045260246000fdfe6080604052600436101561001b575b361561001957600080fd5b005b6000803560e01c806302443a6c14611767578063116191b6146116f857806314099c581461168957806315506fdd14610f065780631a98b2e014610b815780634916065814610965578063545614cc146108f6578063656576361461071b578063868a166d1461066b578063c7e6a3cc146105c2578063e4a974cc146101445763f80e0a42146100ab575061000e565b346101415760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610141576024359067ffffffffffffffff8211610141576101066100fd3660048501611a45565b90600435611e1c565b50506040805173ffffffffffffffffffffffffffffffffffffffff909716875260208701959095525084938401925061013d915050565b0390f35b80fd5b5061014e36611aa9565b97929490989196939573ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000166040517fd26ff210000000000000000000000000000000000000000000000000000000008152846004820152602081602481855afa9081156105b7578d91610588575b5061056057918b9160208a61021d958e6040518098819482937f935b13f60000000000000000000000000000000000000000000000000000000084528760048501526024840191611d00565b03915afa958615610555578b958a8a8f978e979a610508575b50918389827f5844b8bbe3fd2b0354e73f27bfde28d2e6d991f14139c382876ec4360391a47b886102979e9f61028f8e8e6102778f9e9d9b859d3691611cb1565b602081519101209e8f90604051968796339c88611d3f565b0390a46122b5565b73ffffffffffffffffffffffffffffffffffffffff8154166104e0579161036b849260209433905573ffffffffffffffffffffffffffffffffffffffff604051917f23b872dd0000000000000000000000000000000000000000000000000000000087840152610365836103398c30336024850173ffffffffffffffffffffffffffffffffffffffff6040929594938160608401971683521660208201520152565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810185528461189e565b166123b0565b810103126104dc57359273ffffffffffffffffffffffffffffffffffffffff84168094036104dc576103d59160209160405193849283927f935b13f60000000000000000000000000000000000000000000000000000000084528560048501526024840191611d00565b038173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa80156104d1576104999373ffffffffffffffffffffffffffffffffffffffff92869261049c575b506040517fa9059cbb00000000000000000000000000000000000000000000000000000000602082015273ffffffffffffffffffffffffffffffffffffffff909116602482015260448101939093526104938360648101610339565b1661221e565b80f35b6104939192506104c39060203d6020116104ca575b6104bb818361189e565b810190611d82565b9190610437565b503d6104b1565b6040513d86823e3d90fd5b8480fd5b6004887f725f13f1000000000000000000000000000000000000000000000000000000008152fd5b879a509389848294888c9f8098968c9b9a60203d60201161054e575b61052e818361189e565b810161053991611d82565b9f509650505094969750949c50999a50610236565b503d610524565b6040513d85823e3d90fd5b60048c7f0dc10197000000000000000000000000000000000000000000000000000000008152fd5b6105aa915060203d6020116105b0575b6105a2818361189e565b810190611ce8565b386101d1565b503d610598565b6040513d8f823e3d90fd5b50346101415760807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101415760243567ffffffffffffffff811161066757610612903690600401611a7b565b90916044359067ffffffffffffffff8211610141576020610648858561063b3660048801611a7b565b916064359360043561247f565b5473ffffffffffffffffffffffffffffffffffffffff60405191168152f35b5080fd5b50346101415760c07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101415760243567ffffffffffffffff8111610667576106bb903690600401611a7b565b9160443567ffffffffffffffff8111610667576106dc903690600401611a7b565b9290916084359067ffffffffffffffff8211610141576020610648878787876107083660048a01611a7b565b93909260a43595606435936004356122b5565b5061072536611b68565b6040959295949394517fd26ff21000000000000000000000000000000000000000000000000000000000815287600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa9081156108eb5789916108cc575b506108a457916107d261081896949273ffffffffffffffffffffffffffffffffffffffff9896943691611cb1565b6020815191012094604051817f6e18757e81c44a367109cbaa499add16f2ae7168aab9715c3cdc36b0f7ccce923392806108108b8b8b8b8b86611dae565b0390a361247f565b541661087c5760646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f44504178423a205f65786563757465206e6f7420737570706f727465640000006044820152fd5b807f725f13f10000000000000000000000000000000000000000000000000000000060049252fd5b6004887f0dc10197000000000000000000000000000000000000000000000000000000008152fd5b6108e5915060203d6020116105b0576105a2818361189e565b386107a4565b6040513d8b823e3d90fd5b503461014157807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014157602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b50346101415761098361097736611b68565b96919492963691611cb1565b60208151910120946040517f5f6970c30000000000000000000000000000000000000000000000000000000081528560048201526080602482015260208180610a046109d3608483018989611d00565b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8382030160448401528987611d00565b8a606483015203818b73ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165af1908115610b76578891610b57575b5015610b2f5773ffffffffffffffffffffffffffffffffffffffff610a7d87868487878b61247f565b8881549182610b27575b505016958615610ac9577f8fe61b2d4701a29265508750790e322b2c214399abdf98472158b8908b660d4194610ac39260405195869586611dae565b0390a380f35b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f44504178423a205f65786563757465206e6f7420737570706f727465640000006044820152fd5b558838610a87565b6004877f500c44b4000000000000000000000000000000000000000000000000000000008152fd5b610b70915060203d6020116105b0576105a2818361189e565b38610a54565b6040513d8a823e3d90fd5b503461014157610b9036611aa9565b9790949892939896919636610ba690868c611cb1565b80519060200120907f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff16978c8b8a8c8b60405193849283927f1876eed90000000000000000000000000000000000000000000000000000000084528d60048501526024840160c090528b8d60c4860190610c3492611d00565b8481037ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc016044860152610c69908b8b611d00565b908b60648601528482037ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc016084860152610ca392611d00565b9060a48301520381855a94602095f1918215610efa5791610edb575b5015610eb357610cd68b898c8686868b8b8e6122b5565b9b8d8d549d8e610eab575b505073ffffffffffffffffffffffffffffffffffffffff8d16978815610e30575050938a93610d45898c610d849d9b99967fdb3db9dfc9262f4fe09dbadef104f799d8181ec565e09275d80ed3355aab68d39660209e9c9a60405197889788611d3f565b0390a46040518095819482937f935b13f60000000000000000000000000000000000000000000000000000000084528760048501526024840191611d00565b03915afa80156104d1576104999373ffffffffffffffffffffffffffffffffffffffff928692610e0b575b506040517fa9059cbb00000000000000000000000000000000000000000000000000000000602082015273ffffffffffffffffffffffffffffffffffffffff909116602482015260448101939093526103658360648101610339565b610365919250610e299060203d6020116104ca576104bb818361189e565b9190610daf565b9650985050505050506020929650838092500103126104dc57359273ffffffffffffffffffffffffffffffffffffffff84168094036104dc576103d59160209160405193849283927f935b13f60000000000000000000000000000000000000000000000000000000084528560048501526024840191611d00565b558d38610ce1565b60048d7f500c44b4000000000000000000000000000000000000000000000000000000008152fd5b610ef4915060203d6020116105b0576105a2818361189e565b38610cbf565b604051903d90823e3d90fd5b50346101415760a07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610141576004356024359073ffffffffffffffffffffffffffffffffffffffff82168092036116855760443567ffffffffffffffff81116114b857610f7b903690600401611a45565b90916064359173ffffffffffffffffffffffffffffffffffffffff831680930361142a5760843567ffffffffffffffff81116115c557610fbf903690600401611a7b565b94909146841461162757610fd39184611e1c565b90919298969a949789156115c9576040818f978860208451610ff481611853565b82815201528101031261142a576040519061100e82611853565b80359073ffffffffffffffffffffffffffffffffffffffff8216820361141b57602091835201359b8c15158d036115c55760208281019d8e526040517f23b872dd000000000000000000000000000000000000000000000000000000009181019190915233602482015230604482015260648082018a9052815273ffffffffffffffffffffffffffffffffffffffff919091169c8e916110b9908f6110b460848361189e565b61221e565b51156114cb5773ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff61111486612051565b936040519360208501526020845261112d60408561189e565b511692813b156114c7578794876111788f968c97604051998a98899788967f2e9b74700000000000000000000000000000000000000000000000000000000088523060048901611c00565b03925af19081156114bc5785916114a3575b50505b61127673ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016918b6040516020888a6112578461122b858201937f095ea7b30000000000000000000000000000000000000000000000000000000085528b602484016020909392919373ffffffffffffffffffffffffffffffffffffffff60408201951681520152565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810186528561189e565b83519082865af188513d82611487575b50501561142e575b5050612051565b906040518c60208201526020815261128f60408261189e565b813b1561142a57858094611375611315976113456112e5956040519a8b998a9889977fb541708400000000000000000000000000000000000000000000000000000000895260a060048a015260a48901906119e6565b907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8883030160248901526119e6565b907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8683030160448701526119e6565b907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8483030160648501526119e6565b8c608483015203925af1801561141f576113fa575b507f14979b2e45d1b11ad661c075defdd321b77ded48d874ccf96d1b6e42360f150261010088888873ffffffffffffffffffffffffffffffffffffffff898e8a8a6040519733895260208901526040880152606087015260808601521660a084015260c083015260e0820152a180f35b8161140b919897969593949861189e565b61141b579192939490873861138a565b8780fd5b6040513d84823e3d90fd5b8580fd5b61147a61148092604051907f095ea7b30000000000000000000000000000000000000000000000000000000060208301528760248301528a6044830152604482526110b460648361189e565b8d61221e565b8b3861126f565b90915061149b5750813b15155b3880611267565b600114611494565b816114ad9161189e565b6114b857833861118a565b8380fd5b6040513d87823e3d90fd5b8880fd5b9073ffffffffffffffffffffffffffffffffffffffff9692939495967f0000000000000000000000000000000000000000000000000000000000000000169073ffffffffffffffffffffffffffffffffffffffff61152887612051565b916040519460208601526020855261154160408661189e565b511694823b156104dc57876115898a978f604051998a98899788967fc62c20020000000000000000000000000000000000000000000000000000000088523060048901611c00565b03925af180156115ba576115a2575b50908a929161118d565b8b6115b1919c9294939c61189e565b99909138611598565b6040513d8e823e3d90fd5b8680fd5b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601260248201527f44504178423a207a65726f20616d6f756e7400000000000000000000000000006044820152fd5b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601160248201527f44504178423a2073616d6520636861696e0000000000000000000000000000006044820152fd5b8280fd5b503461014157807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014157602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b503461014157807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014157602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b50346101415760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014157604061182c91600435815280602052206117b0816118df565b9073ffffffffffffffffffffffffffffffffffffffff60018201541661184473ffffffffffffffffffffffffffffffffffffffff600284015416916117f7600385016118df565b600573ffffffffffffffffffffffffffffffffffffffff6004870154169501549360405197889760c0895260c08901906119e6565b926020880152604087015285820360608701526119e6565b91608084015260a08301520390f35b6040810190811067ffffffffffffffff82111761186f57604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761186f57604052565b906040519160008154918260011c926001811680156119dc575b6020851081146119af5784875286939291811561196f5750600114611928575b506119269250038361189e565b565b90506000929192526020600020906000915b8183106119535750509060206119269282010138611919565b602091935080600191548385890101520191019091849261193a565b602093506119269592507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0091501682840152151560051b82010138611919565b6024847f4e487b710000000000000000000000000000000000000000000000000000000081526022600452fd5b93607f16936118f9565b919082519283825260005b848110611a305750507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8460006020809697860101520116010190565b806020809284010151828286010152016119f1565b9181601f84011215611a765782359167ffffffffffffffff8311611a76576020808501948460061b010111611a7657565b600080fd5b9181601f84011215611a765782359167ffffffffffffffff8311611a765760208381860195010111611a7657565b9060c07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc830112611a76576004359160243567ffffffffffffffff8111611a765781611af791600401611a7b565b9290929160443567ffffffffffffffff8111611a765781611b1a91600401611a7b565b9290929160643567ffffffffffffffff8111611a765781611b3d91600401611a7b565b929092916084359067ffffffffffffffff8211611a7657611b6091600401611a7b565b909160a43590565b9060807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc830112611a76576004359160243567ffffffffffffffff8111611a765781611bb691600401611a7b565b9290929160443567ffffffffffffffff8111611a765781611bd991600401611a7b565b929092916064359067ffffffffffffffff8211611a7657611bfc91600401611a7b565b9091565b9597969273ffffffffffffffffffffffffffffffffffffffff94611c4f611c5d92611c41611c6b968960c09b97168c5260e060208d015260e08c01906119e6565b908a820360408c01526119e6565b9088820360608a01526119e6565b9086820360808801526119e6565b9560a085015216910152565b67ffffffffffffffff811161186f57601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b929192611cbd82611c77565b91611ccb604051938461189e565b829481845281830111611a76578281602093846000960137010152565b90816020910312611a7657518015158103611a765790565b601f82602094937fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0938186528686013760008582860101520116010190565b929093611d5e611d7f98969795611d6c94608087526080870191611d00565b918483036020860152611d00565b9360408201526060818503910152611d00565b90565b90816020910312611a76575173ffffffffffffffffffffffffffffffffffffffff81168103611a765790565b959493611dca60409492611dd89460608a5260608a0191611d00565b918783036020890152611d00565b930152565b9190811015611ded5760061b0190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b92909192600052600060205260406000209260405160c0810181811067ffffffffffffffff82111761186f57604052611e54856118df565b815273ffffffffffffffffffffffffffffffffffffffff600186015416946020820195865273ffffffffffffffffffffffffffffffffffffffff6002820154169460408301958652611ea8600383016118df565b9460608401958652600573ffffffffffffffffffffffffffffffffffffffff600485015416936080860194855201549160a0850192835273ffffffffffffffffffffffffffffffffffffffff88511615611ff357611f1e73ffffffffffffffffffffffffffffffffffffffff89511687836121b7565b98868a1015611f95575173ffffffffffffffffffffffffffffffffffffffff1698611f4a818884611ddd565b60200135985173ffffffffffffffffffffffffffffffffffffffff16975196611f7292611ddd565b602001359351925173ffffffffffffffffffffffffffffffffffffffff16915190565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601660248201527f445041423a206261642062726964676520746f6b656e000000000000000000006044820152fd5b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601c60248201527f445041423a2062726964676520726f757465206e6f7420666f756e64000000006044820152fd5b73ffffffffffffffffffffffffffffffffffffffff16806040519161207760608461189e565b602a8352602083016040368237835115611ded5760309053825160011015611ded576078602184015360295b600181116120e657506120b4575090565b7fe22e27eb00000000000000000000000000000000000000000000000000000000600052600452601460245260446000fd5b90600f81166010811015611ded576000855184101561218a57507f3031323334353637383961626364656600000000000000000000000000000000901a8483016020015360041c90801561215b577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff016120a3565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b807f4e487b7100000000000000000000000000000000000000000000000000000000602492526032600452fd5b909160005b8381106121c95750505090565b6121d4818585611ddd565b3573ffffffffffffffffffffffffffffffffffffffff8116809103611a765773ffffffffffffffffffffffffffffffffffffffff831614612217576001016121bc565b9250505090565b906000602091828151910182855af1156122a9576000513d6122a0575073ffffffffffffffffffffffffffffffffffffffff81163b155b61225c5750565b73ffffffffffffffffffffffffffffffffffffffff907f5274afe7000000000000000000000000000000000000000000000000000000006000521660045260246000fd5b60011415612255565b6040513d6000823e3d90fd5b9794929096919593604051978897602089019a7febf4535caee8019297b7be3ed867db0d00b69fedcdda98c5e2c41ea6e41a98d58c5260408a01526060890160e0905261010089019061230792611d00565b908782037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe001608089015261233b92611d00565b9160a08601528482037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe00160c086015261237492611d00565b9060e0830152037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810182526123aa908261189e565b51902090565b600073ffffffffffffffffffffffffffffffffffffffff8192169260208151910182855af13d15612478573d6123e581611c77565b906123f3604051928361189e565b81523d6000602083013e5b81612449575b501590811561243f575b5061241557565b7f045c4b020000000000000000000000000000000000000000000000000000000060005260046000fd5b90503b153861240e565b805180159250821561245e575b505038612404565b6124719250602080918301019101611ce8565b3880612456565b60606123fe565b9490936123aa93612501916124d1604051978896602088019a7f2a41fec9a0df4e0996b975f71622c7164b0f652ea69d9dbcd6b24e81b20ab5e58c52604089015260a0606089015260c0880191611d00565b917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0868403016080870152611d00565b9060a0830152037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810183528261189e56fea26469706673582212208ff53651e9fc263ae199b95681229c911d0cefa0ec7ccb9ec6ed78c78f753aa464736f6c634300081a0033000000000000000000000000e432150cce91c13a887f7d836923d5597add8e310000000000000000000000002d5d7d31f671f86c782533cc367f14109a082712000000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000a000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x6080604052600436101561001b575b361561001957600080fd5b005b6000803560e01c806302443a6c14611767578063116191b6146116f857806314099c581461168957806315506fdd14610f065780631a98b2e014610b815780634916065814610965578063545614cc146108f6578063656576361461071b578063868a166d1461066b578063c7e6a3cc146105c2578063e4a974cc146101445763f80e0a42146100ab575061000e565b346101415760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610141576024359067ffffffffffffffff8211610141576101066100fd3660048501611a45565b90600435611e1c565b50506040805173ffffffffffffffffffffffffffffffffffffffff909716875260208701959095525084938401925061013d915050565b0390f35b80fd5b5061014e36611aa9565b97929490989196939573ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000e432150cce91c13a887f7d836923d5597add8e31166040517fd26ff210000000000000000000000000000000000000000000000000000000008152846004820152602081602481855afa9081156105b7578d91610588575b5061056057918b9160208a61021d958e6040518098819482937f935b13f60000000000000000000000000000000000000000000000000000000084528760048501526024840191611d00565b03915afa958615610555578b958a8a8f978e979a610508575b50918389827f5844b8bbe3fd2b0354e73f27bfde28d2e6d991f14139c382876ec4360391a47b886102979e9f61028f8e8e6102778f9e9d9b859d3691611cb1565b602081519101209e8f90604051968796339c88611d3f565b0390a46122b5565b73ffffffffffffffffffffffffffffffffffffffff8154166104e0579161036b849260209433905573ffffffffffffffffffffffffffffffffffffffff604051917f23b872dd0000000000000000000000000000000000000000000000000000000087840152610365836103398c30336024850173ffffffffffffffffffffffffffffffffffffffff6040929594938160608401971683521660208201520152565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810185528461189e565b166123b0565b810103126104dc57359273ffffffffffffffffffffffffffffffffffffffff84168094036104dc576103d59160209160405193849283927f935b13f60000000000000000000000000000000000000000000000000000000084528560048501526024840191611d00565b038173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000e432150cce91c13a887f7d836923d5597add8e31165afa80156104d1576104999373ffffffffffffffffffffffffffffffffffffffff92869261049c575b506040517fa9059cbb00000000000000000000000000000000000000000000000000000000602082015273ffffffffffffffffffffffffffffffffffffffff909116602482015260448101939093526104938360648101610339565b1661221e565b80f35b6104939192506104c39060203d6020116104ca575b6104bb818361189e565b810190611d82565b9190610437565b503d6104b1565b6040513d86823e3d90fd5b8480fd5b6004887f725f13f1000000000000000000000000000000000000000000000000000000008152fd5b879a509389848294888c9f8098968c9b9a60203d60201161054e575b61052e818361189e565b810161053991611d82565b9f509650505094969750949c50999a50610236565b503d610524565b6040513d85823e3d90fd5b60048c7f0dc10197000000000000000000000000000000000000000000000000000000008152fd5b6105aa915060203d6020116105b0575b6105a2818361189e565b810190611ce8565b386101d1565b503d610598565b6040513d8f823e3d90fd5b50346101415760807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101415760243567ffffffffffffffff811161066757610612903690600401611a7b565b90916044359067ffffffffffffffff8211610141576020610648858561063b3660048801611a7b565b916064359360043561247f565b5473ffffffffffffffffffffffffffffffffffffffff60405191168152f35b5080fd5b50346101415760c07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101415760243567ffffffffffffffff8111610667576106bb903690600401611a7b565b9160443567ffffffffffffffff8111610667576106dc903690600401611a7b565b9290916084359067ffffffffffffffff8211610141576020610648878787876107083660048a01611a7b565b93909260a43595606435936004356122b5565b5061072536611b68565b6040959295949394517fd26ff21000000000000000000000000000000000000000000000000000000000815287600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000e432150cce91c13a887f7d836923d5597add8e31165afa9081156108eb5789916108cc575b506108a457916107d261081896949273ffffffffffffffffffffffffffffffffffffffff9896943691611cb1565b6020815191012094604051817f6e18757e81c44a367109cbaa499add16f2ae7168aab9715c3cdc36b0f7ccce923392806108108b8b8b8b8b86611dae565b0390a361247f565b541661087c5760646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f44504178423a205f65786563757465206e6f7420737570706f727465640000006044820152fd5b807f725f13f10000000000000000000000000000000000000000000000000000000060049252fd5b6004887f0dc10197000000000000000000000000000000000000000000000000000000008152fd5b6108e5915060203d6020116105b0576105a2818361189e565b386107a4565b6040513d8b823e3d90fd5b503461014157807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014157602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000002d5d7d31f671f86c782533cc367f14109a082712168152f35b50346101415761098361097736611b68565b96919492963691611cb1565b60208151910120946040517f5f6970c30000000000000000000000000000000000000000000000000000000081528560048201526080602482015260208180610a046109d3608483018989611d00565b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8382030160448401528987611d00565b8a606483015203818b73ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000e432150cce91c13a887f7d836923d5597add8e31165af1908115610b76578891610b57575b5015610b2f5773ffffffffffffffffffffffffffffffffffffffff610a7d87868487878b61247f565b8881549182610b27575b505016958615610ac9577f8fe61b2d4701a29265508750790e322b2c214399abdf98472158b8908b660d4194610ac39260405195869586611dae565b0390a380f35b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f44504178423a205f65786563757465206e6f7420737570706f727465640000006044820152fd5b558838610a87565b6004877f500c44b4000000000000000000000000000000000000000000000000000000008152fd5b610b70915060203d6020116105b0576105a2818361189e565b38610a54565b6040513d8a823e3d90fd5b503461014157610b9036611aa9565b9790949892939896919636610ba690868c611cb1565b80519060200120907f000000000000000000000000e432150cce91c13a887f7d836923d5597add8e3173ffffffffffffffffffffffffffffffffffffffff16978c8b8a8c8b60405193849283927f1876eed90000000000000000000000000000000000000000000000000000000084528d60048501526024840160c090528b8d60c4860190610c3492611d00565b8481037ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc016044860152610c69908b8b611d00565b908b60648601528482037ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc016084860152610ca392611d00565b9060a48301520381855a94602095f1918215610efa5791610edb575b5015610eb357610cd68b898c8686868b8b8e6122b5565b9b8d8d549d8e610eab575b505073ffffffffffffffffffffffffffffffffffffffff8d16978815610e30575050938a93610d45898c610d849d9b99967fdb3db9dfc9262f4fe09dbadef104f799d8181ec565e09275d80ed3355aab68d39660209e9c9a60405197889788611d3f565b0390a46040518095819482937f935b13f60000000000000000000000000000000000000000000000000000000084528760048501526024840191611d00565b03915afa80156104d1576104999373ffffffffffffffffffffffffffffffffffffffff928692610e0b575b506040517fa9059cbb00000000000000000000000000000000000000000000000000000000602082015273ffffffffffffffffffffffffffffffffffffffff909116602482015260448101939093526103658360648101610339565b610365919250610e299060203d6020116104ca576104bb818361189e565b9190610daf565b9650985050505050506020929650838092500103126104dc57359273ffffffffffffffffffffffffffffffffffffffff84168094036104dc576103d59160209160405193849283927f935b13f60000000000000000000000000000000000000000000000000000000084528560048501526024840191611d00565b558d38610ce1565b60048d7f500c44b4000000000000000000000000000000000000000000000000000000008152fd5b610ef4915060203d6020116105b0576105a2818361189e565b38610cbf565b604051903d90823e3d90fd5b50346101415760a07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610141576004356024359073ffffffffffffffffffffffffffffffffffffffff82168092036116855760443567ffffffffffffffff81116114b857610f7b903690600401611a45565b90916064359173ffffffffffffffffffffffffffffffffffffffff831680930361142a5760843567ffffffffffffffff81116115c557610fbf903690600401611a7b565b94909146841461162757610fd39184611e1c565b90919298969a949789156115c9576040818f978860208451610ff481611853565b82815201528101031261142a576040519061100e82611853565b80359073ffffffffffffffffffffffffffffffffffffffff8216820361141b57602091835201359b8c15158d036115c55760208281019d8e526040517f23b872dd000000000000000000000000000000000000000000000000000000009181019190915233602482015230604482015260648082018a9052815273ffffffffffffffffffffffffffffffffffffffff919091169c8e916110b9908f6110b460848361189e565b61221e565b51156114cb5773ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000002d5d7d31f671f86c782533cc367f14109a0827121673ffffffffffffffffffffffffffffffffffffffff61111486612051565b936040519360208501526020845261112d60408561189e565b511692813b156114c7578794876111788f968c97604051998a98899788967f2e9b74700000000000000000000000000000000000000000000000000000000088523060048901611c00565b03925af19081156114bc5785916114a3575b50505b61127673ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000e432150cce91c13a887f7d836923d5597add8e3116918b6040516020888a6112578461122b858201937f095ea7b30000000000000000000000000000000000000000000000000000000085528b602484016020909392919373ffffffffffffffffffffffffffffffffffffffff60408201951681520152565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810186528561189e565b83519082865af188513d82611487575b50501561142e575b5050612051565b906040518c60208201526020815261128f60408261189e565b813b1561142a57858094611375611315976113456112e5956040519a8b998a9889977fb541708400000000000000000000000000000000000000000000000000000000895260a060048a015260a48901906119e6565b907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8883030160248901526119e6565b907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8683030160448701526119e6565b907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8483030160648501526119e6565b8c608483015203925af1801561141f576113fa575b507f14979b2e45d1b11ad661c075defdd321b77ded48d874ccf96d1b6e42360f150261010088888873ffffffffffffffffffffffffffffffffffffffff898e8a8a6040519733895260208901526040880152606087015260808601521660a084015260c083015260e0820152a180f35b8161140b919897969593949861189e565b61141b579192939490873861138a565b8780fd5b6040513d84823e3d90fd5b8580fd5b61147a61148092604051907f095ea7b30000000000000000000000000000000000000000000000000000000060208301528760248301528a6044830152604482526110b460648361189e565b8d61221e565b8b3861126f565b90915061149b5750813b15155b3880611267565b600114611494565b816114ad9161189e565b6114b857833861118a565b8380fd5b6040513d87823e3d90fd5b8880fd5b9073ffffffffffffffffffffffffffffffffffffffff9692939495967f0000000000000000000000002d5d7d31f671f86c782533cc367f14109a082712169073ffffffffffffffffffffffffffffffffffffffff61152887612051565b916040519460208601526020855261154160408661189e565b511694823b156104dc57876115898a978f604051998a98899788967fc62c20020000000000000000000000000000000000000000000000000000000088523060048901611c00565b03925af180156115ba576115a2575b50908a929161118d565b8b6115b1919c9294939c61189e565b99909138611598565b6040513d8e823e3d90fd5b8680fd5b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601260248201527f44504178423a207a65726f20616d6f756e7400000000000000000000000000006044820152fd5b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601160248201527f44504178423a2073616d6520636861696e0000000000000000000000000000006044820152fd5b8280fd5b503461014157807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014157602060405173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000e432150cce91c13a887f7d836923d5597add8e31168152f35b503461014157807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014157602060405173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000e432150cce91c13a887f7d836923d5597add8e31168152f35b50346101415760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014157604061182c91600435815280602052206117b0816118df565b9073ffffffffffffffffffffffffffffffffffffffff60018201541661184473ffffffffffffffffffffffffffffffffffffffff600284015416916117f7600385016118df565b600573ffffffffffffffffffffffffffffffffffffffff6004870154169501549360405197889760c0895260c08901906119e6565b926020880152604087015285820360608701526119e6565b91608084015260a08301520390f35b6040810190811067ffffffffffffffff82111761186f57604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761186f57604052565b906040519160008154918260011c926001811680156119dc575b6020851081146119af5784875286939291811561196f5750600114611928575b506119269250038361189e565b565b90506000929192526020600020906000915b8183106119535750509060206119269282010138611919565b602091935080600191548385890101520191019091849261193a565b602093506119269592507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0091501682840152151560051b82010138611919565b6024847f4e487b710000000000000000000000000000000000000000000000000000000081526022600452fd5b93607f16936118f9565b919082519283825260005b848110611a305750507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8460006020809697860101520116010190565b806020809284010151828286010152016119f1565b9181601f84011215611a765782359167ffffffffffffffff8311611a76576020808501948460061b010111611a7657565b600080fd5b9181601f84011215611a765782359167ffffffffffffffff8311611a765760208381860195010111611a7657565b9060c07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc830112611a76576004359160243567ffffffffffffffff8111611a765781611af791600401611a7b565b9290929160443567ffffffffffffffff8111611a765781611b1a91600401611a7b565b9290929160643567ffffffffffffffff8111611a765781611b3d91600401611a7b565b929092916084359067ffffffffffffffff8211611a7657611b6091600401611a7b565b909160a43590565b9060807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc830112611a76576004359160243567ffffffffffffffff8111611a765781611bb691600401611a7b565b9290929160443567ffffffffffffffff8111611a765781611bd991600401611a7b565b929092916064359067ffffffffffffffff8211611a7657611bfc91600401611a7b565b9091565b9597969273ffffffffffffffffffffffffffffffffffffffff94611c4f611c5d92611c41611c6b968960c09b97168c5260e060208d015260e08c01906119e6565b908a820360408c01526119e6565b9088820360608a01526119e6565b9086820360808801526119e6565b9560a085015216910152565b67ffffffffffffffff811161186f57601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b929192611cbd82611c77565b91611ccb604051938461189e565b829481845281830111611a76578281602093846000960137010152565b90816020910312611a7657518015158103611a765790565b601f82602094937fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0938186528686013760008582860101520116010190565b929093611d5e611d7f98969795611d6c94608087526080870191611d00565b918483036020860152611d00565b9360408201526060818503910152611d00565b90565b90816020910312611a76575173ffffffffffffffffffffffffffffffffffffffff81168103611a765790565b959493611dca60409492611dd89460608a5260608a0191611d00565b918783036020890152611d00565b930152565b9190811015611ded5760061b0190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b92909192600052600060205260406000209260405160c0810181811067ffffffffffffffff82111761186f57604052611e54856118df565b815273ffffffffffffffffffffffffffffffffffffffff600186015416946020820195865273ffffffffffffffffffffffffffffffffffffffff6002820154169460408301958652611ea8600383016118df565b9460608401958652600573ffffffffffffffffffffffffffffffffffffffff600485015416936080860194855201549160a0850192835273ffffffffffffffffffffffffffffffffffffffff88511615611ff357611f1e73ffffffffffffffffffffffffffffffffffffffff89511687836121b7565b98868a1015611f95575173ffffffffffffffffffffffffffffffffffffffff1698611f4a818884611ddd565b60200135985173ffffffffffffffffffffffffffffffffffffffff16975196611f7292611ddd565b602001359351925173ffffffffffffffffffffffffffffffffffffffff16915190565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601660248201527f445041423a206261642062726964676520746f6b656e000000000000000000006044820152fd5b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601c60248201527f445041423a2062726964676520726f757465206e6f7420666f756e64000000006044820152fd5b73ffffffffffffffffffffffffffffffffffffffff16806040519161207760608461189e565b602a8352602083016040368237835115611ded5760309053825160011015611ded576078602184015360295b600181116120e657506120b4575090565b7fe22e27eb00000000000000000000000000000000000000000000000000000000600052600452601460245260446000fd5b90600f81166010811015611ded576000855184101561218a57507f3031323334353637383961626364656600000000000000000000000000000000901a8483016020015360041c90801561215b577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff016120a3565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b807f4e487b7100000000000000000000000000000000000000000000000000000000602492526032600452fd5b909160005b8381106121c95750505090565b6121d4818585611ddd565b3573ffffffffffffffffffffffffffffffffffffffff8116809103611a765773ffffffffffffffffffffffffffffffffffffffff831614612217576001016121bc565b9250505090565b906000602091828151910182855af1156122a9576000513d6122a0575073ffffffffffffffffffffffffffffffffffffffff81163b155b61225c5750565b73ffffffffffffffffffffffffffffffffffffffff907f5274afe7000000000000000000000000000000000000000000000000000000006000521660045260246000fd5b60011415612255565b6040513d6000823e3d90fd5b9794929096919593604051978897602089019a7febf4535caee8019297b7be3ed867db0d00b69fedcdda98c5e2c41ea6e41a98d58c5260408a01526060890160e0905261010089019061230792611d00565b908782037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe001608089015261233b92611d00565b9160a08601528482037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe00160c086015261237492611d00565b9060e0830152037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810182526123aa908261189e565b51902090565b600073ffffffffffffffffffffffffffffffffffffffff8192169260208151910182855af13d15612478573d6123e581611c77565b906123f3604051928361189e565b81523d6000602083013e5b81612449575b501590811561243f575b5061241557565b7f045c4b020000000000000000000000000000000000000000000000000000000060005260046000fd5b90503b153861240e565b805180159250821561245e575b505038612404565b6124719250602080918301019101611ce8565b3880612456565b60606123fe565b9490936123aa93612501916124d1604051978896602088019a7f2a41fec9a0df4e0996b975f71622c7164b0f652ea69d9dbcd6b24e81b20ab5e58c52604089015260a0606089015260c0880191611d00565b917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0868403016080870152611d00565b9060a0830152037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810183528261189e56fea26469706673582212208ff53651e9fc263ae199b95681229c911d0cefa0ec7ccb9ec6ed78c78f753aa464736f6c634300081a0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000e432150cce91c13a887f7d836923d5597add8e310000000000000000000000002d5d7d31f671f86c782533cc367f14109a082712000000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000a000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : _axelarGateway (address): 0xe432150cce91c13a887f7D836923d5597adD8E31
Arg [1] : _axelarGasService (address): 0x2d5d7d31F671F86C782533cc367F14109a082712
Arg [2] : _toChainIds (uint256[]):
Arg [3] : _bridgeRoutes (tuple[]):
-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 000000000000000000000000e432150cce91c13a887f7d836923d5597add8e31
Arg [1] : 0000000000000000000000002d5d7d31f671f86c782533cc367f14109a082712
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000080
Arg [3] : 00000000000000000000000000000000000000000000000000000000000000a0
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000000
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.